Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Pianzzola, M. Soubes, D. Touati (1996)
Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coliJournal of Bacteriology, 178
(2010)
PyroTagger: A fast, accurate pipeline for analysis of rRNA amplicon pyrosequence data. The Open Journal Article 1. http://www.theopenjournal.org/ toj_articles/1
C. Kelley, L. Prufert-Bebout, B. Bebout (2006)
Changes in carbon cycling ascertained by stable isotopic analyses in a hypersaline microbial matJournal of Geophysical Research, 111
(1997)
Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp
J. Cline (1969)
SPECTROPHOTOMETRIC DETERMINATION OF HYDROGEN SULFIDE IN NATURAL WATERS1Limnology and Oceanography, 14
C. Robertson, J. Spear, J. Harris, N. Pace (2008)
Diversity and Stratification of Archaea in a Hypersaline Microbial MatApplied and Environmental Microbiology, 75
Daniel Krekeler, P. Sigalevich, A. Teske, H. Cypionka, Y. Cohen (1997)
A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov.Archives of Microbiology, 167
JM Smith, SJ Green, CA Kelley, L Prufert‐Bebout, BM Bebout (2008)
Shifts in methanogen community structure and function associated with long‐term manipulation of sulfate and salinity in a hypersaline microbial matJournal of Bacteriology, 10
R Rabus, TA Hansen, F Widdel (2006)
ProkaryotesProceedings of the National Academy of Sciences of the United States of America
T. Hoehler, B. Bebout, D. Marais (2001)
The role of microbial mats in the production of reduced gases on the early EarthNature, 412
D. Lovley, D. Dwyer, M. Klug (1982)
Kinetic Analysis of Competition Between Sulfate Reducers and Methanogens for Hydrogen in SedimentsApplied and Environmental Microbiology, 43
D. Canfield, D. Marais (1991)
Aerobic sulfate reduction in microbial mats.Science, 251
D. Huson, S. Mitra, Hans-Joachim Ruscheweyh, N. Weber, S. Schuster (2011)
Integrative analysis of environmental sequences using MEGAN4.Genome research, 21 9
(1995)
Methane production.Environmental science & technology, 29 7
F Widdel (1980)
Anaerober abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten sulfat‐reduzierender BakterienEnvironmental Microbiology Reports
AJM Stams, CM Plugge (2009)
Electron transfer in syntrophic communities of anaerobic bacteria and archaeaApplied and Environmental Microbiology, 7
D. Minz, S. Fishbain, S. Green, G. Muyzer, Y. Cohen, B. Rittmann, D. Stahl (1999)
Unexpected Population Distribution in a Microbial Mat Community: Sulfate-Reducing Bacteria Localized to the Highly Oxic Chemocline in Contrast to a Eukaryotic Preference for AnoxiaApplied and Environmental Microbiology, 65
JB Risatti, WC Capman, DA Stahl (1994)
Community structure of a microbial mat: the phylogenetic dimensionApplied and Environmental Microbiology, 91
B. Bebout, T. Hoehler, B. Thamdrup, D. Albert, S. Carpenter, M. Hogan, K. Turk, D. Marais (2004)
Methane production by microbial mats under low sulphate concentrationsGeobiology, 2
S. Schnell, F. Bak, N. Pfennig (2004)
Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium aniliniArchives of Microbiology, 152
S. Zinder (1993)
Physiological Ecology of Methanogens
A. Stams, C. Plugge (2009)
Electron transfer in syntrophic communities of anaerobic bacteria and archaeaNature Reviews Microbiology, 7
S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman (1990)
Basic local alignment search tool.Journal of molecular biology, 215 3
(1989)
Quantitative relationships between carbon, hydrogen and sulfur metabolism in cyanobacterial mats
Stuart Jones, J. Lennon (2010)
Dormancy contributes to the maintenance of microbial diversityProceedings of the National Academy of Sciences, 107
R. Oremland, S. Polcin (1982)
Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments.Applied and environmental microbiology, 44 6
(1982)
Interspecies hydrogen transfer: 15 years
H. Lumppio, N. Shenvi, A. Summers, G. Voordouw, D. Kurtz (2001)
Rubrerythrin and Rubredoxin Oxidoreductase in Desulfovibrio vulgaris: a Novel Oxidative Stress Protection SystemJournal of Bacteriology, 183
V. Orphan, L. Jahnke, T. Embaye, K. Turk, A. Pernthaler, R. Summons, D. Marais (2008)
Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja CaliforniaGeobiology, 6
M. Wolin (1982)
Interspecies hydrogen transfer: 15 years laterAsm News, 48
Y. Cohen, E. Rosenberg (1989)
Microbial mats : physiological ecology of benthic microbial communities
J. Kuever, M. Könneke, A. Galushko, Oliver Drzyzga (2001)
Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov.International journal of systematic and evolutionary microbiology, 51 Pt 1
L. Burow, D. Woebken, B. Bebout, Paul McMurdie, S. Singer, J. Pett‐Ridge, L. Prufert-Bebout, A. Spormann, P. Weber, T. Hoehler (2011)
Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey BayThe ISME Journal, 6
(2009)
Responses of methanogenic
D. Minz, Jodi Flax, S. Green, G. Muyzer, Y. Cohen, M. Wagner, B. Rittmann, D. Stahl (1999)
Diversity of Sulfate-Reducing Bacteria in Oxic and Anoxic Regions of a Microbial Mat Characterized by Comparative Analysis of Dissimilatory Sulfite Reductase GenesApplied and Environmental Microbiology, 65
Yanli Yuan, R. Conrad, Yahai Lu (2009)
Responses of methanogenic archaeal community to oxygen exposure in rice field soil.Environmental microbiology reports, 1 5
Ying Huang, B. Niu, Ying Gao, L. Fu, Weizhong Li
Bioinformatics Applications Note Sequence Analysis Cd-hit Suite: a Web Server for Clustering and Comparing Biological Sequences
(2005)
Biogeochemistry of dihydrogen ( H 2 )
C. Wawer, Mike Jetten, Gerard Muyzer (1997)
Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samplesApplied and Environmental Microbiology, 63
E. Gaidos, A. Rusch, Melissa Ilardo (2011)
Ribosomal tag pyrosequencing of DNA and RNA from benthic coral reef microbiota: community spatial structure, rare members and nitrogen-cycling guilds.Environmental microbiology, 13 5
E. Baron, P. Summanen, Julie Downes, Marilyn Roberts, Hannah Wexler, S. Finegold (1989)
Bilophila wadsworthia, gen. nov. and sp. nov., a unique gram-negative anaerobic rod recovered from appendicitis specimens and human faeces.Journal of general microbiology, 135 12
J. Risatti, W. Capman, D. Stahl (1994)
Community structure of a microbial mat: the phylogenetic dimension.Proceedings of the National Academy of Sciences of the United States of America, 91 21
R. Oremland, D. Capone (1988)
Use of “Specific” Inhibitors in Biogeochemistry and Microbial EcologyAdvances in Microbial Ecology, 10
Jason Smith, S. Green, C. Kelley, L. Prufert-Bebout, B. Bebout (2008)
Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat.Environmental microbiology, 10 2
J. Ferry (1994)
Methanogenesis : Ecology, Physiology, Biochemistry and Genetics
F. Widdel (1987)
New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov.Archives of Microbiology, 148
L. Burow, D. Woebken, I. Marshall, E. Lindquist, B. Bebout, L. Prufert-Bebout, T. Hoehler, S. Tringe, J. Pett‐Ridge, P. Weber, A. Spormann, S. Singer (2012)
Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomicsThe ISME Journal, 7
M Wagner, AJ Roger, JL Flax, GA Brusseau, DA Stahl (1998)
Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respirationArchives of Microbiology, 180
CE Robertson, JR Spear, JK Harris, NR Pace (2009)
Diversity and stratification of archaea in a hypersaline microbial matArchives of Microbiology, 75
M. Agarande, E. Barker, M. Curtis, R. Lukey (2002)
in environmental samples
J. García-Maldonado, B. Bebout, L. Celis, A. López-Cortés (2012)
Phylogenetic diversity of methyl-coenzyme M reductase (mcrA) gene and methanogenesis from trimethylamine in hypersaline environments.International microbiology : the official journal of the Spanish Society for Microbiology, 15 1
G. Muyzer, A. Stams (2008)
The ecology and biotechnology of sulphate-reducing bacteriaNature Reviews Microbiology, 6
R. Rabus, T. Hansen, F. Widdel (2006)
Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes
T. Hoehler, D. Albert, M. Alperin, B. Bebout, C. Martens, D. Marais (2002)
Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystemsAntonie van Leeuwenhoek, 81
S Schnell, F Bak, N Pfennig (1989)
Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate‐reducing bacteria and description of Desulfobacterium aniliniEnvironmental Microbiology, 152
A. Engelbrektson, V. Kunin, K. Wrighton, Natasha Zvenigorodsky, F. Chen, H. Ochman, P. Hugenholtz (2010)
Experimental factors affecting PCR-based estimates of microbial species richness and evennessThe ISME Journal, 4
T. Hoehler, M. Alperin, D. Albert, C. Martens (1994)
Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen‐sulfate reducer consortiumGlobal Biogeochemical Cycles, 8
T. Hoehler (2005)
Biogeochemistry of dihydrogen (H2).Metal ions in biological systems, 43
C Wawer, MS Jetten, G Muyzer (1997)
Genetic diversity and expression of the [NiFe] hydrogenase large‐subunit gene of Desulfovibrio spp. in environmental samplesASM American Society for Microbiology News, 63
(1980)
Anaerober abbau von Fetts€ auren und Benzoes€ aure durch neu isolierte Arten sulfat-reduzierender Bakterien. University of G€ ottingen, G€ ottingen
D. Lovley, S. Goodwin (1988)
Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sedimentsGeochimica et Cosmochimica Acta, 52
(2010)
PyroTagger : A fast , accurate pipeline for analysis of rRNA amplicon pyrosequence data
M. Wagner, A. Roger, J. Flax, G. Brusseau, D. Stahl (1998)
Phylogeny of Dissimilatory Sulfite Reductases Supports an Early Origin of Sulfate RespirationJournal of Bacteriology, 180
C. Knoblauch, K. Sahm, B. Jørgensen (1999)
Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sInternational journal of systematic bacteriology, 49 Pt 4
T. Hoehler, M. Alperin, D. Albert, C. Martens (1998)
Thermodynamic control on hydrogen concentrations in anoxic sedimentsGeochimica et Cosmochimica Acta, 62
Huang (2010)
CD-HIT Suite: a web server for clustering and comparing biological sequencesBioinformatics, 26
Hypersaline microbial mats have been shown to produce significant quantities of H2 under dark, anoxic conditions via cyanobacterial fermentation. This flux of a widely accessible microbial substrate has potential to significantly influence the ecology of the mat, and any consumption will affect the net efflux of H2 that might otherwise be captured as a resource. Here, we focus on H2 consumption in a microbial mat from Elkhorn Slough, California, USA, for which H2 production has been previously characterized. Active biologic H2 consumption in this mat is indicated by a significant time‐dependent decrease in added H2 compared with a killed control. Inhibition of sulfate reduction, as indicated by a decrease in hydrogen sulfide production relative to controls, resulted in a significant increase in H2 efflux, suggesting that sulfate‐reducing bacteria (SRB) are important hydrogenotrophs. Low methane efflux under these same conditions indicated that methanogens are likely not important hydrogenotrophs. Analyses of genes and transcripts that encode for rRNA or dissimilatory sulfite reductase, using both PCR‐dependent and PCR‐independent metatranscriptomic sequencing methods, demonstrated that Desulfobacterales are the dominant, active SRB in the upper, H2‐producing layer of the mat (0–2 mm). This hypothesis was further supported by the identification of transcripts encoding hydrogenases derived from Desulfobacterales capable of H2 oxidation. Analysis of molecular data provided no evidence for the activity of hydrogenotrophic methanogens. The combined biogeochemical and molecular data strongly indicate that SRB belonging to the Desulfobacterales are the quantitatively important hydrogenotrophs in the Elkhorn Slough mat.
Geobiology – Wiley
Published: Jan 1, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.