Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Immunolocalization of vacuolar‐type H+‐ATPase, cathepsin K, matrix metalloproteinase‐9, and receptor activator of NFkB ligand in odontoclasts during physiological root resorption of human deciduous teeth

Immunolocalization of vacuolar‐type H+‐ATPase, cathepsin K, matrix metalloproteinase‐9, and... To investigate the cellular mechanisms of physiological root resorption in human deciduous teeth, the authors examined the immunocytochemical localization of vacuolar‐type H+‐ATPase, a lysosomal cysteine proteinase, cathepsin K, matrix metalloproteinase‐9 (MMP‐9), and receptor activator of NFKB ligand (RANKL) in odontoclasts. H+‐ATPase, cathepsin K, and MMP‐9 are the most important enzymes for decalcification of apatite crystals and degradation of type‐I collagen. In addition, RANKL is one of the key regulatory molecules in osteoclast formation and functions. Odontoclasts developed extensive ruffled borders and clear zones apposed to the resorbing root dentine surfaces. On immunoelectron microscopy, the expression of vacuolar‐type H+‐ATPase was detected along the limiting membranes of pale vacuoles and the ruffled border membranes of odontoclasts. Cathepsin K in odontoclasts was localized within pale vacuoles, lysosomes, the extracellular canals of ruffled borders, and the underlying resorbing dentine surfaces. MMP‐9 localization in odontoclasts was similar to those of cathepsin K. RANKL was detected in both mononuclear stromal cells and odontoclasts located on resorbing dentine surfaces. These results suggest that (1) odontoclasts are directly involved in decalcification of apatite crystals by active extrusion of proton ions mediated by H+‐ATPase and (2) extracellular degradation of dentine type‐I collagen by both cathepsin K and MMP‐9, and (3) odontoclast differentiation and activity are regulated, at least in part, by RANKL, possibly produced by mononuclear stromal cells and odontoclasts themselves in the resorbing tissues. Thus, the cellular mechanisms of physiological root resorption appear to be quite similar to those of osteoclastic bone resorption. Anat Rec 264:305–311, 2001. © 2001 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Anatomical Record : Advances in Integrative Anatomy and Evolutionary Biology Wiley

Immunolocalization of vacuolar‐type H+‐ATPase, cathepsin K, matrix metalloproteinase‐9, and receptor activator of NFkB ligand in odontoclasts during physiological root resorption of human deciduous teeth

Loading next page...
 
/lp/wiley/immunolocalization-of-vacuolar-type-h-atpase-cathepsin-k-matrix-PHluTs5f9z

References (88)

Publisher
Wiley
Copyright
"Copyright © 2001 Wiley Subscription Services, Inc., A Wiley Company"
ISSN
1932-8486
eISSN
1932-8494
DOI
10.1002/ar.1127
Publisher site
See Article on Publisher Site

Abstract

To investigate the cellular mechanisms of physiological root resorption in human deciduous teeth, the authors examined the immunocytochemical localization of vacuolar‐type H+‐ATPase, a lysosomal cysteine proteinase, cathepsin K, matrix metalloproteinase‐9 (MMP‐9), and receptor activator of NFKB ligand (RANKL) in odontoclasts. H+‐ATPase, cathepsin K, and MMP‐9 are the most important enzymes for decalcification of apatite crystals and degradation of type‐I collagen. In addition, RANKL is one of the key regulatory molecules in osteoclast formation and functions. Odontoclasts developed extensive ruffled borders and clear zones apposed to the resorbing root dentine surfaces. On immunoelectron microscopy, the expression of vacuolar‐type H+‐ATPase was detected along the limiting membranes of pale vacuoles and the ruffled border membranes of odontoclasts. Cathepsin K in odontoclasts was localized within pale vacuoles, lysosomes, the extracellular canals of ruffled borders, and the underlying resorbing dentine surfaces. MMP‐9 localization in odontoclasts was similar to those of cathepsin K. RANKL was detected in both mononuclear stromal cells and odontoclasts located on resorbing dentine surfaces. These results suggest that (1) odontoclasts are directly involved in decalcification of apatite crystals by active extrusion of proton ions mediated by H+‐ATPase and (2) extracellular degradation of dentine type‐I collagen by both cathepsin K and MMP‐9, and (3) odontoclast differentiation and activity are regulated, at least in part, by RANKL, possibly produced by mononuclear stromal cells and odontoclasts themselves in the resorbing tissues. Thus, the cellular mechanisms of physiological root resorption appear to be quite similar to those of osteoclastic bone resorption. Anat Rec 264:305–311, 2001. © 2001 Wiley‐Liss, Inc.

Journal

The Anatomical Record : Advances in Integrative Anatomy and Evolutionary BiologyWiley

Published: Jan 1, 2001

Keywords: ; ; ; ; ;

There are no references for this article.