Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Insights into Influencing Electrode Calendering on the Battery Performance

Insights into Influencing Electrode Calendering on the Battery Performance As the demand for lithium‐ion batteries (LIBs) continuously grows, the necessity to improve their efficiency/performance also grows. For this reason, optimization of the individual production steps is critical. Calendering is a crucial production step whereby electrode coatings are compacted to targeted densities. This process affects the porosity, adhesion, thickness, wettability, and charge transport properties of the electrodes, as well as the homogeneity of the coatings. Optimal calendered electrodes improve volumetric energy density, cyclic stability, and rate capability of the cells and also enhance the structural stability of the active material, which affects electrode safety and polarization. This article outlines the fundamental processes and mechanisms, as well as how modeling, simulation, and tomography can be used to optimize these processes. Additionally, the influence of calendering on a wide range of anode and cathode active materials is discussed. This review serves to give a deeper understanding into the calendering process‐structure‐performance relationships, and how they can be optimized to improve the performance of LIBs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Insights into Influencing Electrode Calendering on the Battery Performance

Loading next page...
 
/lp/wiley/insights-into-influencing-electrode-calendering-on-the-battery-x0rIbMzi3t

References (217)

Publisher
Wiley
Copyright
© 2023 Wiley‐VCH GmbH
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.202300973
Publisher site
See Article on Publisher Site

Abstract

As the demand for lithium‐ion batteries (LIBs) continuously grows, the necessity to improve their efficiency/performance also grows. For this reason, optimization of the individual production steps is critical. Calendering is a crucial production step whereby electrode coatings are compacted to targeted densities. This process affects the porosity, adhesion, thickness, wettability, and charge transport properties of the electrodes, as well as the homogeneity of the coatings. Optimal calendered electrodes improve volumetric energy density, cyclic stability, and rate capability of the cells and also enhance the structural stability of the active material, which affects electrode safety and polarization. This article outlines the fundamental processes and mechanisms, as well as how modeling, simulation, and tomography can be used to optimize these processes. Additionally, the influence of calendering on a wide range of anode and cathode active materials is discussed. This review serves to give a deeper understanding into the calendering process‐structure‐performance relationships, and how they can be optimized to improve the performance of LIBs.

Journal

Advanced Energy MaterialsWiley

Published: Oct 1, 2023

Keywords: battery performance; electrode calendering; electrode properties; volumetric energy density

There are no references for this article.