Access the full text.
Sign up today, get DeepDyve free for 14 days.
R. Price, T. Fletcher, R. Jensen (2007)
Using computational fluid dynamics modeling to improve the performance of a solar CO2 converterIndustrial & Engineering Chemistry Research, 46
P. Carden (1977)
Energy corradiation using the reversible ammonia reactionSolar Energy, 19
R. Müller, A. Steinfeld (2008)
H2O-splitting thermochemical cycle based on ZnO/Zn-redox: Quenching the effluents from the ZnO dissociationChemical Engineering Science, 63
A. Wörner, R. Tamme (1998)
CO2 reforming of methane in a solar driven volumetric receiver–reactorCatalysis Today, 46
T. Kodama, N. Gokon (2007)
Thermochemical cycles for high-temperature solar hydrogen production.Chemical Reviews, 107
A. Meier, V. Kirillov, G. Kuvshinov, Yu.I. Mogilnykh, A. Reller, A. Steinfeld, A. Weidenkaff (1999)
Solar thermal decomposition of hydrocarbons and carbon monoxide for the production of catalytic filamentous carbonChemical Engineering Science, 54
K. Lovegrove, A. Luzzi, Holger Kreetz (1999)
A Solar-Driven Ammonia-Based Thermochemical Energy Storage SystemSolar Energy, 67
J. Richardson, S. Paripatyadar (1990)
Carbon dioxide reforming of methane with supported rhodiumApplied Catalysis, 61
A. Kogan (2000)
Direct solar thermal splitting of water and on-site separation of the products — IV. Development of porous ceramic membranes for a solar thermal water-splitting reactorInternational Journal of Hydrogen Energy, 25
A. Steinfeld, M. Schubnell (1993)
Optimum aperture size and operating temperature of a solar cavity-receiverSolar Energy, 50
A. Steinfeld (2002)
Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactionsInternational Journal of Hydrogen Energy, 27
S. Ihara (1980)
On the study of hydrogen production from water using solar thermal energyInternational Journal of Hydrogen Energy, 5
T. Osinga, G. Olalde, A. Steinfeld (2004)
Solar Carbothermal Reduction of ZnO: Shrinking Packed-Bed Reactor Modeling and Experimental ValidationIndustrial & Engineering Chemistry Research, 43
Luzzi Luzzi, Lovegrove Lovegrove, Filippi Filippi, Fricker Fricker, Schmitz‐Goeb Schmitz‐Goeb, Chandapillai Chandapillai (1999,)
Base‐load solar thermal power using thermochemical energy storageJ Phys 4, 9
J. Petrasch, B. Schrader, P. Wyss, A. Steinfeld (2008)
Tomography-Based Determination of the Effective Thermal Conductivity of Fluid-Saturated Reticulate Porous CeramicsJournal of Heat Transfer-transactions of The Asme, 130
R. Buck, J. Muir, R. Hogan (1991)
Carbon Dioxide Reforming of Methane in a Solar Volumetric Receiver-Reactor: The CAESAR Project.Solar Energy Materials, 24
E. Bilgen, M. Ducarroir, M. Foex, F. Sibieude, F. Trombe (1977)
Use of solar energy for direct and two-step water decomposition cyclesInternational Journal of Hydrogen Energy, 2
T. Kodama, Y. Kondoh, R. Yamamoto, H. Andou, N. Satou (2004)
Thermochemical hydrogen production by a redox system of ZrO2-supported Co(II)-ferriteSolar Energy, 78
A. Steinfeld (1998)
Solar-processed metals as clean energy carriers and water-splittersInternational Journal of Hydrogen Energy, 23
M. Levy, R. Levitan, H. Rosin, R. Rubin (1993)
Solar energy storage via a closed-loop chemical heat pipeSolar Energy, 50
G. Beghi (1986)
A decade of research on thermochemical hydrogen at the Joint Research Centre, IspraInternational Journal of Hydrogen Energy, 11
A. Aochi, T. Tadokoro, K. Yoshida, H. Kameyama, M. Nobue, T. Yamaguchi (1989)
Economical and technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale plantInternational Journal of Hydrogen Energy, 14
R. Adinberg, M. Epstein, J. Karni (2004)
Solar Gasification of Biomass: A Molten Salt Pyrolysis StudyJournal of Solar Energy Engineering-transactions of The Asme, 126
R. Tamme, R. Buck, M. Epstein, U. Fisher, Chemi Sugarmen (2001)
Solar Upgrading of Fuels for Generation of ElectricityJournal of Solar Energy Engineering-transactions of The Asme, 123
Y. Tamaura, A. Steinfeld, P. Kuhn, Köbi Ehrensberger (1995)
Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycleEnergy, 20
A. Meier, Enrico Bonaldi, G. Cella, W. Lipiński, D. Wuillemin, R. Palumbo (2004)
Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of limeEnergy, 29
N. Gokon, Y. Oku, H. Kaneko, Y. Tamaura (2002)
Methane reforming with CO2 in molten salt using FeO catalystSolar Energy, 72
L. Schunk, P. Haeberling, S. Wepf, D. Wuillemin, A. Meier, A. Steinfeld (2007)
A Receiver-Reactor for the Solar Thermal Dissociation of Zinc
A. Gadalla, Barbara Bower (1988)
The role of catalyst support on the activity of nickel for reforming methane with CO2Chemical Engineering Science, 43
M. Levy, R. Rubin, H. Rosin, R. Levitan (1992)
Methane reforming by direct solar irradiation of the catalystEnergy, 17
J. Murray, A. Steinfeld, E. Fletcher (1995)
Metals, nitrides, and carbides via solar carbothermal reduction of metal oxidesEnergy, 20
A. Weidenkaff, A. Reller, A. Wokaun, A. Steinfeld (2000)
Thermogravimetric analysis of the ZnO/Zn water splitting cycleThermochimica Acta, 359
J. Petrasch, Fabian Meier, H. Friess, A. Steinfeld (2008)
Tomography based determination of permeability, Dupuit–Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramicsInternational Journal of Heat and Fluid Flow, 29
J. Petrasch, P. Wyss, A. Steinfeld (2007)
Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramicsJournal of Quantitative Spectroscopy & Radiative Transfer, 105
H. Kaneko, T. Kodama, N. Gokon, Y. Tamaura, K. Lovegrove, A. Luzzi (2004)
Decomposition of Zn-ferrite for O2 generation by concentrated solar radiationSolar Energy, 76
S. Möller, R. Palumbo (2001)
Solar thermal decomposition kinetics of ZnO in the temperature range 1950-2400 KChemical Engineering Science, 56
E. Fletcher (1999)
Solarthermal and Solar Quasi-Electrolytic Processing and Separations: Zinc from Zinc Oxide as an ExampleIndustrial & Engineering Chemistry Research, 38
A. Kogan, M. Kogan, Samuel Barak (2004)
Production of hydrogen and carbon by solar thermal methane splitting. II. Room temperature simulation tests of seeded solar reactorInternational Journal of Hydrogen Energy, 29
S. Kräupl, A. Steinfeld (2001)
Pulsed Gas Feeding for Stoichiometric Operation of a Gas-Solid Vortex Flow Solar Chemical ReactorJournal of Solar Energy Engineering-transactions of The Asme, 123
A. Meier, Enrico Bonaldi, G. Cella, W. Lipiński (2005)
Multitube Rotary Kiln for the Industrial Solar Production of LimeJournal of Solar Energy Engineering-transactions of The Asme, 127
Procédé et dispositif pour l'utilisation d'énergie thermiqueà haute température, en particulier d'origine nucléaire [Device and method for the use of high-temperature heat energy
A. Kogan (1998)
Direct solar thermal splitting of water and on-site separation of the products—II. Experimental feasibility studyInternational Journal of Hydrogen Energy, 23
M. Keunecke, A. Meier, R. Palumbo (2004)
Solar thermal decomposition of zinc oxide: an initial investigation of the recombination reaction in the temperature range 1100-1250 KChemical Engineering Science, 59
P. Zedtwitz, A. Steinfeld (2003)
The solar thermal gasification of coal — energy conversion efficiency and CO2 mitigation potentialEnergy, 28
R. Palumbo (1999)
Solar thermal chemical processing : Challenges and changesJournal De Physique Iv, 09
T. Kodama, T. Koyanagi, T. Shimizu, Y. Kitayama (2001)
CO2 Reforming of Methane in a Molten Carbonate Salt Bath for Use in Solar Thermochemical ProcessesEnergy & Fuels, 15
J. Dahl, A. Weimer, A. Lewandowski, C. Bingham, Fabian Bruetsch, A. Steinfeld (2004)
Dry Reforming of Methane Using a Solar-Thermal Aerosol Flow ReactorIndustrial & Engineering Chemistry Research, 43
T. Kodama, A. Aoki, S. Miura, Y. Kitayama (1998)
Efficient thermochemical cycle for CO2 reduction with coal using a reactive redox system of ferriteStudies in Surface Science and Catalysis, 114
O. Salman, N. Khraishi (1988)
Thermal decomposition of limestone and gypsum by solar energySolar Energy, 41
V. Barbarossa, S. Brutti, M. Diamanti, S. Sau, G. Maria (2006)
Catalytic thermal decomposition of sulphuric acid in sulphur–iodine cycle for hydrogen productionInternational Journal of Hydrogen Energy, 31
E. Bilgen, R. Joels (1985)
An assessment of solar hydrogen production using the mark 13 hybrid processInternational Journal of Hydrogen Energy, 10
(2012)
Hydrogen production by Volume 1, November /December
A. Berman, R. Karn, M. Epstein (2005)
Kinetics of steam reforming of methane on Ru/Al2O3 catalyst promoted with Mn oxidesApplied Catalysis A-general, 282
(2004)
Production of hydrogen and carbon by solar thermal methane splitting, II. Room temperature simulation tests of seeded 358 Volume 1, November /December 2012 c © 2012
A. Duigou, J. Borgard, B. Larousse, D. Doizi, R. Allen, B. Ewan, G. Priestman, R. Elder, Robin Devonshire, Victor Ramos, G. Cerri, C. Salvini, Ambra Giovannelli, G. Maria, C. Corgnale, S. Brutti, M. Roeb, Adam Noglik, Peter Rietbrock, S. Mohr, L. Oliveira, N. Monnerie, Mark Schmitz, C. Sattler, Alfredo Martinez, Daniel de, Lorenzo Manzano, J. Rojas, S. Déchelotte, O. Baudouin (2007)
HYTHEC: An EC funded search for a long term massive hydrogen production route using solar and nuclear technologiesInternational Journal of Hydrogen Energy, 32
T. Chubb (1975)
Analysis of gas dissociation solar thermal power systemSolar Energy, 17
K. Wegner, Hao Ly, Rodrigo Weiss, S. Pratsinis, A. Steinfeld (2006)
In situ formation and hydrolysis of Zn nanoparticles for H2 production by the 2-step ZnO/Zn water-splitting thermochemical cycleInternational Journal of Hydrogen Energy, 31
Holger Kreetz, K. Lovegrove (1999)
Theoretical analysis and experimental results of a 1 kWchem ammonia synthesis reactor for a solar thermochemical energy storage systemSolar Energy, 67
D. Luxembourg, G. Flamant, A. Guillot, D. Laplaze (2004)
Hydrogen storage in solar produced single-walled carbon nanotubesMaterials Science and Engineering B-advanced Functional Solid-state Materials, 108
T. Guillard, S. Cetout, L. Alvarez, J. Sauvajol, E. Anglaret, P. Bernier, G. Flamant, D. Laplaze (1999)
Production of carbon nanotubes by the solar routeEuropean Physical Journal-applied Physics, 5
J. Badie, C. Bonet, M. Faure, G. Flamant, R. Foro, D. Hernandez (1980)
52 Decarbonation of calcite and phosphate rock in solar chemical reactors.Chemical Engineering Science, 35
Tom Melchior, Christopher Perkins, A. Weimer, A. Steinfeld (2008)
A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energyInternational Journal of Thermal Sciences, 47
R. Levitan, H. Rosin, M. Levy (1989)
Chemical reactions in a solar furnace—Direct heating of the reactor in a tubular receiverSolar Energy, 42
R. Carty, W. Conger (1980)
A heat penalty and economic analysis of the hybrid sulfuric acid processInternational Journal of Hydrogen Energy, 5
T. Kodama (2003)
High-temperature solar chemistry for converting solar heat to chemical fuelsProgress in Energy and Combustion Science, 29
(2007)
Twostep water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production
S. Möller, R. Buck, R. Tamme, M. Epstein, D. Liebermann, M. Meri, U. Fisher, A. Rotstein, Chemi Sugarmen (2002)
Solar Production of Syngas for Electricity Generation: SOLASYS Project Test-Phase
L. Dombrovsky, L. Schunk, W. Lipiński, A. Steinfeld (2009)
An ablation model for the thermal decomposition of porous zinc oxide layer heated by concentrated solar radiationInternational Journal of Heat and Mass Transfer, 52
E. Fletcher, R. Moen (1977)
Hydrogen- and Oxygen from WaterScience, 197
T. Kodama, Y. Watanabe, S. Miura, M. Sato, Y. Kitayama (1996)
Reactive and selective redox system of Ni(II)-ferrite for a two-step CO and H2 production cycle from carbon and waterEnergy, 21
F. Sibieude, M. Ducarroir, A. Tofighi, J. Ambriz (1982)
High temperature experiments with a solar furnace: The decomposition of Fe3O4, Mn3O4, CdOInternational Journal of Hydrogen Energy, 7
A. Luzzi, K. Lovegrove (1997)
A solar thermochemical power plant using ammonia as an attractive option for greenhouse-gas abatementEnergy, 22
Kogan Kogan, Spiegler Spiegler, Wolfshtein Wolfshtein (2000)
Direct solar thermal splitting of water and on‐site separation of the products. III.: Improvement of reactor efficiency by steam entrainmentInt J Hydrogen Energy, 25
H. Fedders, R. Harth, B. Höhlein (1975)
Experiments for combining nuclear heat with the methane steam-reforming processNuclear Engineering and Design, 34
Adam Noglik, M. Roeb, Thomas Rzepczyk, J. Hinkley, C. Sattler, R. Pitz-Paal (2007)
Solar Thermochemical Generation of Hydrogen : Development of a Receiver Reactor for the Decomposition of Sulfuric AcidJournal of Solar Energy Engineering-transactions of The Asme, 131
T. Nakamura (1977)
Hydrogen production from water utilizing solar heat at high temperaturesSolar Energy, 19
(1982)
Solar energy for wood gasification
Christopher Perkins, A. Weimer (2004)
Likely near-term solar-thermal water splitting technologiesInternational Journal of Hydrogen Energy, 29
A. Luzzi, K. Lovegrove, E. Filippi, H. Fricker, M. Schmitz-Goeb, M. Chandapillai, S. Kaneff (1999)
TECHNO-ECONOMIC ANALYSIS OF A 10 MWe SOLAR THERMAL POWER PLANT USING AMMONIA-BASED THERMOCHEMICAL ENERGY STORAGESolar Energy, 66
K. Lovegrove, A. Luzzi, I. Soldiani, Holger Kreetz (2003)
Developing ammonia based thermochemical energy storage for dish power plantsSolar Energy, 76
S. Möller (2001)
Entwicklung eines Reaktors zur solarthermischen Herstellung von Zink aus Zinkoxid zur Energiespeicherung mit Hilfe konzentrierter Sonnenstrahlung
S. Abanades, P. Charvin, G. Flamant, P. Neveu (2006)
Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energyEnergy, 31
Philipp Haueter, S. Moeller, R. Palumbo, A. Steinfeld (1999)
The production of zinc by thermal dissociation of zinc oxide - Solar chemical reactor designSolar Energy, 67
H. Fedders, B. Höhlein (1982)
Operating a pilot plant circuit for energy transport with hydrogen-rich gasInternational Journal of Hydrogen Energy, 7
(1999)
Theoretical analysis and experimental results of a 1 kWchem ammonia synthesis reactor for a solar thermochemical energy storage sys
(2012)
Multitube rotary kiln for the industrial solar 360 Volume 1, November /December
P. Charvin, S. Abanades, G. Flamant, F. Lemort (2007)
Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen productionEnergy, 32
D. O'keefe, C. Allen, G. Besenbruch, L. Brown, J. Norman, R. Sharp, K. Mccorkle (1980)
Preliminary results from bench-scale testing of a sulfur-iodine thermochemical water-splitting cycleInternational Journal of Hydrogen Energy, 7
I. Vishnevetsky, M. Epstein (2007)
Production of hydrogen from solar zinc in steam atmosphereInternational Journal of Hydrogen Energy, 32
A. Traynor, R. Jensen (2002)
Direct Solar Reduction of CO2 to Fuel: First Prototype ResultsIndustrial & Engineering Chemistry Research, 41
J. Petrasch, P. Wyss, R. Stämpfli, A. Steinfeld (2008)
Tomography-Based Multiscale Analyses of the 3D Geometrical Morphology of Reticulated Porous CeramicsJournal of the American Ceramic Society, 91
J. Dahl, K. Buechler, Ryan Finley, T. Stanislaus, A. Weimer, A. Lewandowski, C. Bingham, A. Smeets, Adrian Schneider (2004)
Rapid solar-thermal dissociation of natural gas in an aerosol flow reactorEnergy, 29
Y. Tadokoro, T. Kajiyama, T. Yamaguchi, N. Sakai, H. Kameyama, K. Yoshida (1997)
Technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale plantInternational Journal of Hydrogen Energy, 22
(2004)
drogen storage in solar produced single - walled carbon nanotubes
J. Edwards, K. Do, A. Maitra, S. Schuck, W. Fok, W. Stein (1996)
The use of solar-based CO2/CH4 reforming for reducing greenhouse gas emissions during the generation of electricity and process heatEnergy Conversion and Management, 37
E. Teo, N. Brandon, E. Vos, G. Kramer (2005)
A critical pathway energy efficiency analysis of the thermochemical UT-3 cycleInternational Journal of Hydrogen Energy, 30
(2004)
Conversion of concentrated solar energy to chemical energy two step water splitting cycle with ni - ferrite / zirconia system
A. Koutinas, P. Yianoulis, A. Lycourghiotis (1983)
Industrial scale modelling of the thermochemical energy storage system based on CO2 + 2NH3 ↔ NH2COONH4 equilibriumEnergy Conversion and Management, 23
M. Sakurai, A. Tsutsumi, Kunio Yoshida (1995)
Improvement of Ca-pellet reactivity in UT-3 thermochemical hydrogen production cycleInternational Journal of Hydrogen Energy, 20
R. Palumbo, M. Keunecke, S. Möller, A. Steinfeld (2004)
Reflections on the design of solar thermal chemical reactors: thoughts in transformationEnergy, 29
A. Kogan, M. Israeli, E. Alcobi (2007)
Production of hydrogen and carbon by solar thermal methane splitting. IV. Preliminary simulation of a confined tornado flow configuration by computational fluid dynamicsInternational Journal of Hydrogen Energy, 32
S. Abanades, G. Flamant (2006)
Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxidesSolar Energy, 80
M. Sakurai, N. Miyake, A. Tsutsumi, Kunio Yoshida (1996)
Analysis of a reaction mechanism in the UT-3 thermochemical hydrogen production cycleInternational Journal of Hydrogen Energy, 21
E. Bilgen (1984)
Solar hydrogen production by direct water decomposition process: a preliminary engineering assessmentInternational Journal of Hydrogen Energy, 9
A. Aoki, H. Ohtake, T. Shimizu, Y. Kitayama, T. Kodama (2000)
Reactive metal-oxide redox system for a two-step thermochemical conversion of coal and water to CO and H2Energy, 25
K. Ehrensberger, A. Frei, P. Kuhn, H. Oswald, P. Hug (1995)
Comparative experimental investigations of the water-splitting reaction with iron oxide Fe1−yO and iron manganese oxides (Fe1−xMnx)1−yOSolid State Ionics, 78
A. Meier, N. Gremaud, A. Steinfeld (2005)
Economic evaluation of the industrial solar production of limeEnergy Conversion and Management, 46
R. Müller, W. Lipiński, A. Steinfeld (2008)
Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnOApplied Thermal Engineering, 28
A. Weidenkaff, A. Steinfeld, A. Wokaun, P. Auer, B. Eichler, A. Reller (1999)
DIRECT SOLAR THERMAL DISSOCIATION OF ZINC OXIDE: CONDENSATION AND CRYSTALLISATION OF ZINC IN THE PRESENCE OF OXYGENSolar Energy, 65
R. Hogan, R. Skocypec, R. Diver, J. Fish, M. Garrait, J. Richardson (1990)
A direct absorber reactor/receiver for solar thermal applicationsChemical Engineering Science, 45
K. Yoshida, H. Kameyama, T. Aochi, M. Nobue, M. Aihara, R. Amir, H. Kondo, T. Sato, Y. Tadokoro, T. Yamaguchi, N. Sakai (1990)
A simulation study of the UT-3 thermochemical hydrogen production processInternational Journal of Hydrogen Energy, 15
(1980)
Hernandez D. Decarbonation of calcite and phosphate rock in solar chemical reactors
(2002)
CO2 mitigation in the lime industry: replacing fossil fuels with concentrated solar energy
J. Muir, R. Hogan, R. Skocypec, R. Buck (1994)
Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish
(1982)
Contribution à l’étude de la decomposition des oxydes de fer au foyer d’un four solaire
A. Broggi, R. Joels, G. Mertel, M. Morbello (1981)
A method for the techno-economic evaluation of chemical processes—improvements to the “OPTIMO” codeInternational Journal of Hydrogen Energy, 6
Qiang Ma, L. Luo, Ruzhu Wang, G. Sauce (2009)
A review on transportation of heat energy over long distance: Exploratory developmentRenewable & Sustainable Energy Reviews, 13
Palumbo Palumbo (1999,)
Solar thermal chemical processing: challenges and changesJ Phys IV France, 9
Frederik Rütten, I. Alxneit, H. Tschudi (2007)
Challenges in the Thermochemical Water-splitting Cycle Based on the ZnO/Zn Redox Pair: Rapid Quench and Nucleation of Zinc
A. Z'graggen, Philipp Haueter, D. Trommer, M. Romero, J. Jesus, A. Steinfeld (2006)
Hydrogen production by steam-gasification of petroleum coke using concentrated solar power—II Reactor design, testing, and modelingInternational Journal of Hydrogen Energy, 31
R. Palumbo, J. Lédé, O. Boutin, E. Ricart, A. Steinfeld, S. Möller, A. Weidenkaff, E. Fletcher, J. Bielicki (1998)
The production of Zn from ZnO in a high- temperature solar decomposition quench process—I. The scientific framework for the processChemical Engineering Science, 53
(1985)
drogen production via the solar thermal decarboniza - tion of fossil fuels
R. Adinberg, M. Epstein (2004)
Experimental study of solar reactors for carboreduction of zinc oxideEnergy, 29
E. Bilgen, C. Bilgen (1986)
A hybrid thermochemical hydrogen producing process based on the Cristina-mark cyclesInternational Journal of Hydrogen Energy, 11
W. Chueh, C. Falter, M. Abbott, Danien Scipio, P. Furler, S. Haile, A. Steinfeld (2010)
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric CeriaScience, 330
L. Dombrovsky, W. Lipiński, A. Steinfeld (2007)
A diffusion-based approximate model for radiation heat transfer in a solar thermochemical reactorJournal of Quantitative Spectroscopy & Radiative Transfer, 103
L. Schunk, W. Lipiński, A. Steinfeld (2009)
Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO—Experimental validation at 10 kW and scale-up to 1 MWChemical Engineering Journal, 150
S. Abanades, P. Charvin, F. Lemont, G. Flamant (2008)
Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogenInternational Journal of Hydrogen Energy, 33
P. Zedtwitz, J. Petrasch, D. Trommer, A. Steinfeld (2003)
Hydrogen Production Via the Solar Thermal Decarbonization of Fossil FuelsSolar Energy, 80
P. Loutzenhiser, A. Steinfeld (2011)
Solar syngas production from CO2 and H2O in a two-step thermochemical cycle via Zn/ZnO redox reactions: Thermodynamic cycle analysisInternational Journal of Hydrogen Energy, 36
D. Hirsch, M. Epstein, A. Steinfeld (2001)
The solar thermal decarbonization of natural gasInternational Journal of Hydrogen Energy, 26
A. Kogan, E. Spiegler, M. Wolfshtein (2000)
Direct solar thermal splitting of water and on-site separation of the products. III.International Journal of Hydrogen Energy
A. Weidenkaff, M. Brack, S. Möller, R. Palumbo, A. Steinfeld (1999)
Solar thermal production of zinc : Program strategy and status of researchJournal De Physique Iv, 09
P. Lu (1983)
Technological aspects of sulfur dioxide depolarized electrolysis for hydrogen productionInternational Journal of Hydrogen Energy, 8
A. Meier, Enrico Bonaldi, G. Cella, W. Lipiński, D. Wuillemin (2006)
Solar chemical reactor technology for industrial production of limeSolar Energy, 80
K. Kugeler, H. Niessen, M. Röth-Kamat, D. Böcker, B. Rüter, K. Theis (1975)
Transport of nuclear heat by means of chemical energy (nuclear long-distance energy)Nuclear Engineering and Design, 34
Gilles Maag, W. Lipiński, A. Steinfeld (2009)
Particle–gas reacting flow under concentrated solar irradiationInternational Journal of Heat and Mass Transfer, 52
R. Price, D. Morse, S. Hardy, T. Fletcher, S. Hill, R. Jensen (2004)
Modeling the direct solar conversion of CO2 to CO and O2Industrial & Engineering Chemistry Research, 43
D. Laplaze, L. Alvarez, T. Guillard, J. Badie, G. Flamant (2002)
Carbon nanotubes: dynamics of synthesis processesCarbon, 40
A. Kogan (1997)
Direct solar thermal splitting of water and on site separation of the products I. Theoretical evaluation of hydrogen yieldInternational Journal of Hydrogen Energy, 22
(2000)
conversion of coal and water to CO and H 2
D. Fraenkel, R. Levitan, M. Levy (1986)
A solar thermochemical pipe based on the CO2CH4 (1:1) systemInternational Journal of Hydrogen Energy, 11
(1999)
Technoeconomic analysis of a 10 MW solar thermal power
A. Kogan, M. Kogan, Samuel Barak (2005)
Production of hydrogen and carbon by solar thermal methane splitting. III. Fluidization, entrainment and seeding powder particles into a volumetric solar receiverInternational Journal of Hydrogen Energy, 30
(2012)
A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using 356 Volume 1, November /December
M. Levy, H. Rosin, R. Levitan (1989)
Chemical Reactions in a Solar Furnace by Direct Solar Irradiation of the CatalystJournal of Solar Energy Engineering-transactions of The Asme, 111
D. Hirsch, A. Steinfeld (2004)
Radiative transfer in a solar chemical reactor for the co-production of hydrogen and carbon by thermal decomposition of methaneChemical Engineering Science, 59
(1996)
Solar experiments with a tubular reformer
Skocypec Skocypec, Hogan Hogan, Muir Muir (1994)
Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: II–Modeling and analysisSolar Energy, 52
M. Sakurai, M. Aihara, N. Miyake, A. Tsutsumi, Kunio Yoshida (1992)
Test of one-loop flow scheme for the UT-3 thermochemical hydrogen production processInternational Journal of Hydrogen Energy, 17
T. Kodama, S. Miura, T. Shimizu, Y. Kitayama (1997)
Thermochemical conversion of coal and water to CO and H2 by a two-step redox cycle of ferriteEnergy, 22
W. Weirich, K. Knoche, F. Behr, H. Barnert (1984)
Thermochemical processes for water splitting-status and outlookNuclear Engineering and Design, 78
A. Z'graggen, Philipp Haueter, Gilles Maag, A. Vidal, M. Romero, A. Steinfeld (2007)
Hydrogen Production by Steam-Gasification of Petroleum Coke using Concentrated Solar Power: III. Reactor experimentation with slurry feedingInternational Journal of Hydrogen Energy, 32
A. Luzzi, K. Lovegrove, E. Filippi, H. Fricker, M. Schmitz-Goeb, M. Chandapillai (1999)
Base-load solar thermal power using thermochemical energy storageJournal De Physique Iv, 09
Kodama Kodama, Aoki Aoki, Miura Miura, Kitayama Kitayama (1998)
Efficient thermochemical cycle for CO 2 reduction with coal using a reactive redox system of ferrite. In: Advances in Chemical Conversions for Mitigating Carbon Dioxide, Proc Fourth Int Conf on Carbon Dioxide UtilizationStud Surf Sci Catal, 114
Holger Kreetz, K. Lovegrove (2002)
Exergy analysis of an ammonia synthesis reactor in a solar thermochemical power systemSolar Energy, 73
Weidenkaff Weidenkaff, Brack Brack, Möller Möller, Palumbo Palumbo, Steinfeld Steinfeld (1999)
Solar thermal production of zinc: Program strategy and status of researchJ. Phys IV France, 9
(1983)
Industrial scale modelling of the thermochemical energy storage system based on CO2 + 2NH3 in equilibrium NH2COONH4 equilibrium
C. Wieckert, U. Frommherz, S. Kräupl, E. Guillot, G. Olalde, M. Epstein, S. Santén, T. Osinga, A. Steinfeld (2006)
A 300kW Solar Chemical Pilot Plant for the Carbothermic Production of ZincJournal of Solar Energy Engineering-transactions of The Asme, 129
R. Müller, P. Haeberling, R. Palumbo (2006)
Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s)Solar Energy, 80
K. Lovegrove, A. Luzzi (1996)
Endothermic reactors for an ammonia based thermochemical solar energy storage and transport systemSolar Energy, 56
K. Lovegrove, A. Luzzi, M. McCann, O. Freitag (1999)
EXERGY ANALYSIS OF AMMONIA-BASED SOLAR THERMOCHEMICAL POWER SYSTEMSSolar Energy, 66
M. Sakurai, E. Bilgen, A. Tsutsumi, Kunio Yoshida (1996)
Adiabatic UT-3 thermochemical process for hydrogen productionInternational Journal of Hydrogen Energy, 21
Integrated solar thermochemical cycles comprise a range of promising novel process technologies that use concentrated solar energy to drive endothermic chemical reactions at elevated temperatures. The most promising application is the production of carbon‐neutral fuels, particularly via single or multistep water and CO2 splitting or via the solar thermochemical upgrading of carbonaceous fuels such as biomass, waste, or oil residues. Furthermore, intermediate storage of solar energy in reversible reactions, the so‐called solar thermochemical heat pipes, shows great promise to replace latent heat storage for concentrating solar power generation. Potential niche applications are material processing and material testing. Widespread deployment of solar thermochemical cycles hinges on the development of several key technologies: (i) reaction systems and catalysts able to endure tens of thousands of conversion cycles without significant degradation, (ii) reactors and heat recuperation systems that fully exploit the theoretical potential of solar thermochemical cycles, (iii) industrial‐scale reactor technologies, and (iv) process control technologies that address the inherently transient nature of solar power.
Wiley Interdisciplinary Reviews: Energy and Environment – Wiley
Published: Nov 1, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.