Access the full text.
Sign up today, get DeepDyve free for 14 days.
H. Thierstein, K. Geitzenauer, B. Molfino, N. Shackleton (1977)
Global synchroneity of late Quaternary coccolith datum levels Validation by oxygen isotopesGeology, 5
M. Abràmoff, P. Magalhães, S. Ram (2004)
Image processing with ImageJ, 11
(1985)
Carbon isotope fractionation of algae as influenced by an inducible CO 2 concentrating mechanism. In Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms
Y. Shiraiwa (2003)
Physiological regulation of carbon fixation in the photosynthesis and calcification of coccolithophorids.Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 136 4
K. Freeman, J. Hayes (1992)
Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels.Global biogeochemical cycles, 6 2
I. Marlowe, S. Brassell, G. Eglinton, J. Green (1990)
Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sedimentsChemical Geology, 88
N. Leonardos, B. Read, B. Thake, J. Young (2009)
NO MECHANISTIC DEPENDENCE OF PHOTOSYNTHESIS ON CALCIFICATION IN THE COCCOLITHOPHORID EMILIANIA HUXLEYI (HAPTOPHYTA) 1Journal of Phycology, 45
S. Dutkiewicz, M. Follows, Jason Bragg, Jason Bragg (2009)
Modeling the coupling of ocean ecology and biogeochemistryGlobal Biogeochemical Cycles, 23
D. McNevin, M. Badger, S. Whitney, S. Caemmerer, G. Tcherkez, G. Farquhar (2007)
Differences in Carbon Isotope Discrimination of Three Variants of D-Ribulose-1,5-bisphosphate Carboxylase/Oxygenase Reflect Differences in Their Catalytic Mechanisms*♦Journal of Biological Chemistry, 282
E. Laws, Brian 'j, R. Bidigare, M. Kennicutt, S. Macko (1995)
Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2)aq: Theoretical considerations and experimental resultsGeochimica et Cosmochimica Acta, 59
B. Demmig-Adams, W. Adams (2006)
Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation.The New phytologist, 172 1
B. Rost, U. Riebesell (2004)
Coccolithophores and the biological pump: responses to environmental changes
L. Herfort, E. Loste, F. Meldrum, B. Thake (2004)
Structural and physiological effects of calcium and magnesium in Emiliania huxleyi (Lohmann) Hay and Mohler.Journal of structural biology, 148 3
U. Riebesell, U. Riebesell, D. Wolf-Gladrow, V. Smetácek (1993)
Carbon dioxide limitation of marine phytoplankton growth ratesNature, 361
(2006)
A model of photosynthetic 13 c fractionation by marine phytoplankton based on diffusive molecular CO 2 uptake
E. Laws, R. Bidigare, B. Popp (1997)
Effect of growth rate and CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutumLimnology and Oceanography, 42
C. Linschooten, Judith Bleijswijk, P. Emburg, J. Vrind, E. Kempers, P. Westbroek, Elisabeth Jong (1991)
ROLE OF THE LIGHT‐DARK CYCLE AND MEDIUM COMPOSITION ON THE PRODUCTION OF COCCOLITHS BY EMILIANIA HUXLEYI (HAPTOPHYCEAE) 1Journal of Phycology, 27
R. Arvidson, F. Mackenzie, M. Guidry (2006)
MAGic: A Phanerozoic Model for the Geochemical Cycling of Major Rock-Forming ComponentsAmerican Journal of Science, 306
G. Rau, U. Riebesell, D. Wolf-Gladrow (1996)
A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptakeMarine Ecology Progress Series, 133
I. Raffi, J. Backman, E. Fornaciari, H. Pälike, D. Rio, L. Lourens, F. Hilgen (2006)
A review of calcareous nannofossil astrobiochronology encompassing the past 25 million yearsQuaternary Science Reviews, 25
L. Berry, Alison Taylor, U. Lucken, K. Ryan, C. Brownlee (2002)
Calcification and inorganic carbon acquisition in coccolithophores.Functional plant biology : FPB, 29 3
C. Russell, T. Jones, I. Barr, Nancy Cox, R. Garten, Vicky Gregory, Ian Gust, A. Hampson, Alan Hay, A. Hurt, J. Jong, A. Kelso, Alexander Klimov, T. Kageyama, N. Komadina, A. Lapedes, Yitian Lin, Ana Mosterín, M. Obuchi, T. Odagiri, A. Osterhaus, G. Rimmelzwaan, M. Shaw, E. Skepner, K. Stohr, M. Tashiro, Derek Smith (2008)
Phytoplankton Calcification in a High-CO2 WorldScience, 320
S. Trimborn, G. Langer, B. Rost (2007)
Effect of varying calcium concentrations and light intensities on calcification and photosynthesis in Emiliania huxleyiLimnology and Oceanography, 52
G. Farquhar, J. Ehleringer, K. Hubick (1989)
Carbon Isotope Discrimination and Photosynthesis, 40
K. Keller, F. Morel (1999)
A model of carbon isotopic fractionation and active carbon uptake in phytoplanktonMarine Ecology Progress Series, 182
L. Herfort, B. Thake, James Roberts (2002)
Acquisition and use of bicarbonate by Emiliania huxleyi.The New phytologist, 156 3
G. Langer, G. Nehrke, I. Probert, J. Ly, P. Ziveri (2009)
Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistryBiogeosciences, 6
R. Guillard (1975)
Culture of Phytoplankton for Feeding Marine Invertebrates
J. Raven, M. Giordano, J. Beardall, S. Maberly (2011)
Algal and aquatic plant carbon concentrating mechanisms in relation to environmental changePhotosynthesis Research, 109
E. Paasche (1999)
Reduced coccolith calcite production under light-limited growth: a comparative study of three clones of Emiliania huxleyi (Prymnesiophyceae)Phycologia, 38
R. Rickaby, J. Henderiks, Jodi Young (2010)
Perturbing phytoplankton : a tale of isotopic fractionation in two coccolithophore speciesClimate of The Past Discussions, 6
U. Riebesell, I. Zondervan, B. Rost, P. Tortell, R. Zeebe, F. Morel (2000)
Reduced calcification of marine plankton in response to increased atmospheric CO2Nature, 407
W. Mook, J. Bommerson, W. Staverman (1974)
CARBON ISOTOPE FRACTIONATION BETWEEN DISSOLVED BICARBONATE AND GASEOUS CARBON-DIOXIDEEarth and Planetary Science Letters, 22
G. Sarazin, G. Michard, F. Prévot (1999)
A rapid and accurate spectroscopic method for alkalinity measurements in sea water samplesWater Research, 33
P. Ziveri, H. Stoll, I. Probert, C. Klaas, M. Geisen, G. Ganssen, J. Young (2003)
Stable isotope ‘vital effects’ in coccolith calciteEarth and Planetary Science Letters, 210
E. Buitenhuis, H. Baar, M. Veldhuis (1999)
PHOTOSYNTHESIS AND CALCIFICATION BY EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) AS A FUNCTION OF INORGANIC CARBON SPECIESJournal of Phycology, 35
J. Backman, J. Hermelin (1986)
Morphometry of the Eocene nannofossil Reticulofenestra umbilicus lineage and its biochronological consequencesPalaeogeography, Palaeoclimatology, Palaeoecology, 57
M. Pagani (2002)
The alkenone-CO2 proxy and ancient atmospheric carbon dioxidePhilosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360
R. Rickaby, J. Henderiks, Jodi Young (2010)
Perturbing phytoplankton : response and isotopic fractionation with changing carbonate chemistry in two coccolithophore speciesClimate of The Past, 6
M. Badger, T. Andrews, S. Whitney, M. Ludwig, D. Yellowlees, W. Leggat, G. Price (1998)
THE DIVERSITY AND COEVOLUTION OF RUBISCO, PLASTIDS, PYRENOIDS, AND CHLOROPLAST-BASED CO2-CONCENTRATING MECHANISMS IN ALGAEBotany, 76
J. Young, J. Didymus, P. Brown, Ben Prins, S. Mann (1992)
Crystal assembly and phylogenetic evolution in heterococcolithsNature, 356
B. Rost, U. Riebesell, D. Sültemeyer (2006)
Carbon acquisition of marine phytoplankton: Effect of photoperiod lengthLimnology and Oceanography, 51
Janie Lee, J. Morse (2010)
Influences of alkalinity and pCO2 on CaCO3 nucleation from estimated Cretaceous composition seawater representative of "calcite seas"Geology, 38
P. Bown, J. Lees, J. Young (2004)
Calcareous nannoplankton evolution and diversity through time
L. Beaufort, I. Probert, T. Garidel-Thoron, E. Bendif, D. Ruiz-Pino, N. Metzl, C. Goyet, N. Buchet, P. Coupel, M. Grelaud, M. Grelaud, Bjoern Rost, R. Rickaby, C. Vargas (2011)
Sensitivity of coccolithophores to carbonate chemistry and ocean acidificationNature, 476
I. Zondervan, B. Rost, U. Riebesell (2002)
Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths.Journal of Experimental Marine Biology and Ecology, 272
R. Guillard, J. Ryther (1962)
Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran.Canadian journal of microbiology, 8
A. Boller, Phaedra Thomas, C. Cavanaugh, K. Scott (2011)
Low stable carbon isotope fractionation by coccolithophore RubisCOGeochimica et Cosmochimica Acta, 75
E. Laws, B. Popp, N. Cassar, Jamie Tanimoto (2002)
13C discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions.Functional plant biology : FPB, 29 3
R. Berner (1994)
Geocarb III: A Revised Model of Atmospheric CO2 over Phanerozoic TimeAmerican Journal of Science, 301
M. Giordano, J. Beardall, J. Raven (2005)
CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution.Annual review of plant biology, 56
E. Laws, B. Popp, R. Bidigare, U. Riebesell, S. Burkhardt, S. Wakeham (2001)
Controls on the molecular distribution and carbon isotopic composition of alkenones in certain haptophyte algaeGeochemistry, 2
J. Henderiks, M. Pagani (2008)
Coccolithophore cell size and the Paleogene decline in atmospheric CO2Earth and Planetary Science Letters, 269
(2006)
CO2SYS DOS Program Developed for CO 2 System Calculations. ORNL ⁄ CDIAC-105. Carbon Dioxide Information Analysis Center
M. Pagani, J. Zachos, K. Freeman, B. Tipple, S. Bohaty (2005)
Marked Decline in Atmospheric Carbon Dioxide Concentrations During the PaleogeneScience, 309
A. Kaffes, S. Thoms, S. Trimborn, B. Rost, G. Langer, K. Richter, A. Köhler, A. Norici, M. Giordano (2010)
Carbon and nitrogen fluxes in the marine coccolithophore Emiliania huxleyi grown under different nitrate concentrationsJournal of Experimental Marine Biology and Ecology, 393
Brian Popp, E. Laws, R. Bidigare, J. Dore, Kristi Hanson, S. Wakeham (1998)
Effect of Phytoplankton Cell Geometry on Carbon Isotopic FractionationGeochimica et Cosmochimica Acta, 62
N. Nimer, M. Merrett (1993)
Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbonNew Phytologist, 123
J. Reinfelder (2011)
Carbon concentrating mechanisms in eukaryotic marine phytoplankton.Annual review of marine science, 3
Coccolithophores have played a key role in the carbon cycle since becoming dominant in the Cretaceous ocean, and their influence depends fundamentally on how they interact with their external carbon environment. Because the photosynthetic carbon‐fixing enzyme Rubisco requires high levels of CO2 for effective catalysis, coccolithophores are known to induce carbon concentrating mechanisms (CCMs) to raise the level of dissolved inorganic carbon (DIC) in an ‘internal pool’. The ocean carbon system has varied greatly over the geological past, suggesting that coccolithophore interactions with that external carbon environment will have changed in parallel. The widespread present‐day coccolithophore Gephyrocapsa oceanica was acclimated here to a geological scale change in the seawater carbon system (five times higher DIC and alkalinity). Significant acclimation in response to the external carbon environment was demonstrated by a fourfold increase in the Km substrate concentration requirement for half‐maximum photosynthetic carbon fixation rates (suggesting that CCMs were down‐regulated when ambient carbon was more available). There was, however, no difference in growth rate, morphology or calcification, suggesting that calcification is not coupled to photosynthesis as one of the CCMs induced here and that productivity (growth rate and calcification) is not carbon‐limited under representative present‐day conditions. Beyond the kinetic parameters of photosynthesis, the only other indication of changed cell physiology seen was the increased fractionation of carbon isotopes into organic matter. These findings demonstrate that G. oceanica changes its carbon‐use physiology to maintain consistent photosynthetic carbon fixation in concert with different levels of ambient DIC without changing its morphology or calcification.
Geobiology – Wiley
Published: Jan 1, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.