Access the full text.
Sign up today, get DeepDyve free for 14 days.
E. Ziegel (2003)
The Elements of Statistical LearningTechnometrics, 45
G. Foody (2002)
Status of land cover classification accuracy assessmentRemote Sensing of Environment, 80
J. Holloway, K. Helmstedt, K. Mengersen, Michael Schmidt (2019)
A Decision Tree Approach for Spatially Interpolating Missing Land Cover Data and Classifying Satellite ImagesRemote. Sens., 11
M. Wulder, S. Ortlepp, J. White, S. Maxwell (2008)
Evaluation of Landsat-7 SLC-off image products for forest change detectionCanadian Journal of Remote Sensing, 34
N. Flood (2013)
Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median)Remote. Sens., 5
E. Bullock, C. Woodcock, P. Olofsson (2020)
Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysisRemote Sensing of Environment, 238
T. Borowik, N. Pettorelli, L. Sönnichsen, B. Jędrzejewska (2013)
Normalized difference vegetation index (NDVI) as a predictor of forage availability for ungulates in forest and field habitatsEuropean Journal of Wildlife Research, 59
K. Dickinson, L. Wall, R. Wilson (1986)
Birds in a partly clearfelled dry eucalypt forest on dolerite in southeastern Tasmania, 120
(2018)
CEOS EO HANDBOOK special 2018 edition
M. Paganini, A. Leidner, G. Geller, W. Turner, M. Wegmann (2016)
The role of space agencies in remotely sensed essential biodiversity variablesRemote Sensing in Ecology and Conservation, 2
K.W. Ng, G.L. Tian, M.L. Tang (2011)
Dirichlet and related distributions: theory, methods and applications. Wiley series in probability and statistics
T. Staley, Javier Gonzalez, J. Neel (2008)
Conversion of deciduous forest to silvopasture produces soil properties indicative of rapid transition to improved pastureAgroforestry Systems, 74
S. Pau, L. Dee (2016)
Remote sensing of species dominance and the value for quantifying ecosystem servicesRemote Sensing in Ecology and Conservation, 2
Global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development
K. Helmstedt, M. Potts (2018)
Valuable habitat and low deforestation can reduce biodiversity gains from development rights marketsJournal of Applied Ecology, 55
Jong-Sen Lee (1981)
Speckle analysis and smoothing of synthetic aperture radar imagesComputer Graphics and Image Processing, 17
R. Solar, J. Barlow, A. Andersen, J. Schoereder, E. Berenguer, J. Ferreira, T. Gardner (2016)
Biodiversity consequences of land-use change and forest disturbance in the Amazon:a multi-scale assessment using ant communitiesBiological Conservation, 197
M. Hirschmugl, Janik Deutscher, Carina Sobe, A. Bouvet, S. Mérmoz, M. Schardt (2020)
Use of SAR and Optical Time Series for Tropical Forest Disturbance MappingRemote. Sens., 12
K. Biron, J. Secker (2019)
The Impact of Variability in SAR Satellite Imagery on ClassificationCanadian Journal of Remote Sensing, 45
K. Ng, G. Tian, M. Tang (2011)
Dirichlet and Related Distributions: Theory, Methods and Applications
Michael Schmidt, R. Lucas, P. Bunting, J. Verbesselt, J. Armston (2015)
Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, AustraliaRemote Sensing of Environment, 158
N. Chawla, K. Bowyer, L. Hall, W. Kegelmeyer (2002)
SMOTE: Synthetic Minority Over-sampling TechniqueArXiv, abs/1106.1813
Spatial modelling for koalas in South East Queensland Koala Habitat Areas (KHA) v1.0
Jacinta Holloway-Brown, K. Helmstedt, K. Mengersen (2021)
Spatial Random Forest (S-RF): A random forest approach for spatially interpolating missing land-cover data with multiple classesInternational Journal of Remote Sensing, 42
F. Gao, J. Masek, M. Schwaller, F. Hall (2006)
On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectanceIEEE Transactions on Geoscience and Remote Sensing, 44
S. Luque, N. Pettorelli, P. Vihervaara, M. Wegmann (2018)
Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targetsMethods in Ecology and Evolution, 9
Committee on Earth Observation Satellites and European Space Agency
Package 'caret
Forestry -Earth Observing System
Roxanne Leberger, I. Rosa, C. Guerra, Florian Wolf, H. Pereira (2020)
Global patterns of forest loss across IUCN categories of protected areasBiological Conservation
E. Honthaner (2017)
The Ever-Changing Landscape
Kara Youngentob, Hwan‐Jin Yoon, J. Stein, D. Lindenmayer, A. Held (2015)
Where the wild things are: using remotely sensed forest productivity to assess arboreal marsupial species richness and abundanceDiversity and Distributions, 21
P. Griffiths, S. Linden, T. Kuemmerle, P. Hostert (2013)
A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover MappingIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6
(2019)
A decision tree approach for spatially interpolating missing land cover data and classifying satellite images. Remote Sensing
M. Pringle, Michael Schmidt, Jasmine Muir (2009)
Geostatistical interpolation of SLC-off Landsat ETM+ imagesIsprs Journal of Photogrammetry and Remote Sensing, 64
Jacinta Holloway-Brown, K. Helmstedt, K. Mengersen (2020)
Stochastic spatial random forest (SS-RF) for interpolating probabilities of missing land cover dataJournal of Big Data, 7
Łukasz Tracewski, S. Butchart, P. Donald, M. Evans, L. Fishpool, G. Buchanan (2016)
Patterns of twenty‐first century forest loss across a global network of important sites for biodiversityRemote Sensing in Ecology and Conservation, 2
P. Singh, N. Komodakis (2018)
IGARSS 2018 ? 2018 IEEE International Geoscience and Remote Sensing Symposium
M. Hansen, P. Potapov, R. Moore, Matt Hancher, S. Turubanova, A. Tyukavina, D. Thau, S. Stehman, S. Goetz, T. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. Justice, J. Townshend (2013)
High-Resolution Global Maps of 21st-Century Forest Cover ChangeScience, 342
R. Pontius, M. Millones (2011)
Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessmentInternational Journal of Remote Sensing, 32
G. Asner (2001)
Cloud cover in Landsat observations of the Brazilian AmazonInternational Journal of Remote Sensing, 22
Package 'raster': geographic data analysis and modeling
D. Roy, J. Ju, Philip Lewis, C. Schaaf, F. Gao, M. Hansen, E. Lindquist (2008)
Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat dataRemote Sensing of Environment, 112
(2008)
Earth observation using radar
C. Palmann, S. Mavromatis, M. Hernández-Tejera, J. Sequeira, B. Brisco (2008)
Earth observation using radar data: an overview of applications and challengesInternational Journal of Digital Earth, 1
(2020)
User Guides -Sentinel-2 MSI -Revisit and Coverage -Sentinel Online
(2015)
Land cover CCI product user guide version 2.0
A. Beresford, P. Donald, G. Buchanan (2020)
Repeatable and standardised monitoring of threats to Key Biodiversity Areas in Africa using Google Earth EngineEcological Indicators, 109
Mariana Belgiu, L. Drăguţ (2016)
Random forest in remote sensing: A review of applications and future directionsIsprs Journal of Photogrammetry and Remote Sensing, 114
Chuanrong Zhang, Weidong Li, D. Travis (2009)
Restoration of clouded pixels in multispectral remotely sensed imagery with cokrigingInternational Journal of Remote Sensing, 30
(2013)
Native animals of In june 100K map tile
A. Schneibel, D. Frantz, A. Röder, M. Stellmes, Kim Fischer, J. Hill (2017)
Using Annual Landsat Time Series for the Detection of Dry Forest Degradation Processes in South-Central AngolaRemote. Sens., 9
(2011)
Landholder guide: guidelines for thinning of native vegetation under the NSW Native Vegetation regulation 2013 draft for discussion
Praveer Singh, N. Komodakis (2018)
Cloud-Gan: Cloud Removal for Sentinel-2 Imagery Using a Cyclic Consistent Generative Adversarial NetworksIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
B. Wilson, J. Knight, R. McRoberts (2018)
Harmonic regression of Landsat time series for modeling attributes from national forest inventory dataIsprs Journal of Photogrammetry and Remote Sensing, 137
R. Team (2014)
R: A language and environment for statistical computing.MSOR connections, 1
S. Tahsin, S. Medeiros, M. Hooshyar, Arvind Singh (2017)
Optical Cloud Pixel Recovery via Machine LearningRemote. Sens., 9
E. Ozelkan, S. Bagis, E. Ozelkan, B. Ustundag, Meric Yucel, C. Ormeci (2015)
Spatial interpolation of climatic variables using land surface temperature and modified inverse distance weightingInternational Journal of Remote Sensing, 36
(2018)
Cloud removal for sentinel-2 imagery using a cyclic consistent generative adversarial networks
(2016)
Remote sensing of species
N. Joshi, E. Mitchard, N. Woo, J. Torres, J. Moll-Rocek, A. Ehammer, M. Collins, M. Jepsen, R. Fensholt (2015)
Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite dataEnvironmental Research Letters, 10
(2018)
Cloud removal for sentinel
K. Johansen, S. Phinn, Martin Taylor (2015)
Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth EngineRemote Sensing Applications: Society and Environment, 1
Jean-Paul Chilbs, P. Delfiner (2000)
GeostatisticsTechnometrics, 42
(2002)
Classification and regression by random forest
Remote Sensing in Ecology and Conservation – Wiley
Published: Dec 1, 2021
Keywords: Biodiversity; forest cover; random forest; satellite images; sustainable development goals; uncertainty
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.