Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

La2NiO4+δ‐Based Memristive Devices Integrated on Si‐Based Substrates

La2NiO4+δ‐Based Memristive Devices Integrated on Si‐Based Substrates Valence change memories, in which internal redox reactions control the change in resistance are promising candidates for resistive random access memories (ReRAMs) and neuromorphic computing elements. In this context, La2NiO4+δ (L2NO4), a mixed ionic‐electronic conducting oxide, well known for its highly mobile oxygen interstitial ions, emerges as a potential switching material for novel L2NO4‐based memristive devices. However, their integration in complementary metal oxide semiconductor (CMOS) technology still has to be demonstrated, as the major focus of previous studies has been carried out on epitaxial films grown on single crystals. In this work, the optimization of the deposition temperature and precursor solution composition is presented, allowing to obtain high‐quality polycrystalline L2NO4 thin films grown by metal organic chemical vapor deposition on a platinized silicon substrate, and to use these films to build memristive devices in vertical configuration with Ti top electrodes. A bipolar analog‐type transition in resistance can be achieved in Ti/L2NO4/Pt memristive devices. While the “forming” process required for the devices based on nonoptimized L2NO4 thin films is considered as a drawback, the Ti/optimized L2NO4/Pt devices are forming‐free and exhibit a good cyclability. These results prove the switching response of L2NO4‐based devices in a vertical configuration for the first time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Materials Technologies Wiley

Loading next page...
 
/lp/wiley/la2nio4-based-memristive-devices-integrated-on-si-based-substrates-Qs1laKyc30

References (36)

Publisher
Wiley
Copyright
© 2022 Wiley‐VCH GmbH
eISSN
2365-709X
DOI
10.1002/admt.202200329
Publisher site
See Article on Publisher Site

Abstract

Valence change memories, in which internal redox reactions control the change in resistance are promising candidates for resistive random access memories (ReRAMs) and neuromorphic computing elements. In this context, La2NiO4+δ (L2NO4), a mixed ionic‐electronic conducting oxide, well known for its highly mobile oxygen interstitial ions, emerges as a potential switching material for novel L2NO4‐based memristive devices. However, their integration in complementary metal oxide semiconductor (CMOS) technology still has to be demonstrated, as the major focus of previous studies has been carried out on epitaxial films grown on single crystals. In this work, the optimization of the deposition temperature and precursor solution composition is presented, allowing to obtain high‐quality polycrystalline L2NO4 thin films grown by metal organic chemical vapor deposition on a platinized silicon substrate, and to use these films to build memristive devices in vertical configuration with Ti top electrodes. A bipolar analog‐type transition in resistance can be achieved in Ti/L2NO4/Pt memristive devices. While the “forming” process required for the devices based on nonoptimized L2NO4 thin films is considered as a drawback, the Ti/optimized L2NO4/Pt devices are forming‐free and exhibit a good cyclability. These results prove the switching response of L2NO4‐based devices in a vertical configuration for the first time.

Journal

Advanced Materials TechnologiesWiley

Published: Nov 1, 2022

Keywords: lanthanum nickelate; memristive devices; metal organic chemical vapor deposition (MOCVD); resistive switching; valence change memories (VCMs)

There are no references for this article.