Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Landsat time series reveal forest loss and woody encroachment in the Ngorongoro Conservation Area, Tanzania

Landsat time series reveal forest loss and woody encroachment in the Ngorongoro Conservation... The Ngorongoro Conservation Area (NCA) of Tanzania, is globally significant for biodiversity conservation due to the presence of iconic fauna, and, since 1959 has been managed as a unique multiple land‐use areas to mutually benefit wildlife and indigenous residents. Understating vegetation dynamics and ongoing land cover change processes in protected areas is important to protect biodiversity and ensure sustainable development. However, land cover changes in savannahs are especially difficult, as changes are often long‐term and subtle. Here, we demonstrate a Landsat‐based monitoring strategy incorporating (i) regression‐based unmixing for the accurate mapping of the fraction of the different land cover types, and (ii) a combination of linear regression and the BFAST trend break analysis technique for mapping and quantifying land cover changes. Using Google Earth Pro and the EnMap‐Box software, the fractional cover of the main land cover types of the NCA were accurately mapped for the first time, namely bareland, bushland, cropland, forest, grassland, montane heath, shrubland, water and woodland. Our results show that the main changes occurring in the NCA are the degradation of upland forests into bushland: we exemplify this with a case study in the Lerai Forest; and found declines in grassland and co‐incident increases in shrubland in the Serengeti Plains, suggesting woody encroachment. These changes threaten the wellbeing of livestock, the livelihoods of resident pastoralists and of the wildlife dependent on these grazing areas. Some of the land cover changes may be occurring naturally and caused by herbivory, rainfall patterns and vegetation succession, but many are linked to human activity, specifically, management policies, tourism development and the increase in human population and livestock. Our study provides for the first time much needed and highly accurate information on long‐term land cover changes in the NCA that can support the sustainable management and conservation of this unique UNESCO World Heritage Site. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Remote Sensing in Ecology and Conservation Wiley

Landsat time series reveal forest loss and woody encroachment in the Ngorongoro Conservation Area, Tanzania

19 pages

Loading next page...
 
/lp/wiley/landsat-time-series-reveal-forest-loss-and-woody-encroachment-in-the-O8pPshYJSX

References (103)

Publisher
Wiley
Copyright
© 2022 Published by John Wiley & Sons Ltd.
ISSN
2056-3485
eISSN
2056-3485
DOI
10.1002/rse2.277
Publisher site
See Article on Publisher Site

Abstract

The Ngorongoro Conservation Area (NCA) of Tanzania, is globally significant for biodiversity conservation due to the presence of iconic fauna, and, since 1959 has been managed as a unique multiple land‐use areas to mutually benefit wildlife and indigenous residents. Understating vegetation dynamics and ongoing land cover change processes in protected areas is important to protect biodiversity and ensure sustainable development. However, land cover changes in savannahs are especially difficult, as changes are often long‐term and subtle. Here, we demonstrate a Landsat‐based monitoring strategy incorporating (i) regression‐based unmixing for the accurate mapping of the fraction of the different land cover types, and (ii) a combination of linear regression and the BFAST trend break analysis technique for mapping and quantifying land cover changes. Using Google Earth Pro and the EnMap‐Box software, the fractional cover of the main land cover types of the NCA were accurately mapped for the first time, namely bareland, bushland, cropland, forest, grassland, montane heath, shrubland, water and woodland. Our results show that the main changes occurring in the NCA are the degradation of upland forests into bushland: we exemplify this with a case study in the Lerai Forest; and found declines in grassland and co‐incident increases in shrubland in the Serengeti Plains, suggesting woody encroachment. These changes threaten the wellbeing of livestock, the livelihoods of resident pastoralists and of the wildlife dependent on these grazing areas. Some of the land cover changes may be occurring naturally and caused by herbivory, rainfall patterns and vegetation succession, but many are linked to human activity, specifically, management policies, tourism development and the increase in human population and livestock. Our study provides for the first time much needed and highly accurate information on long‐term land cover changes in the NCA that can support the sustainable management and conservation of this unique UNESCO World Heritage Site.

Journal

Remote Sensing in Ecology and ConservationWiley

Published: Dec 1, 2022

Keywords: BFAST; EnMAP; land cover change; Landsat; linear trend; Ngorongoro Conservation Area; regression‐based unmixing; time series

There are no references for this article.