Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Álvarez‐Martínez, B. Jiménez‐Alfaro, J. Barquín, B. Ondiviela, M. Recio, A. Silió-Calzada, J. Juanes (2017)
Modelling the area of occupancy of habitat types with remote sensingMethods in Ecology and Evolution, 9
Steven Phillips, Miroslav Dudík (2008)
Modeling of species distributions with Maxent: new extensions and a comprehensive evaluationEcography, 31
Steven Phillips, R. Anderson, R. Schapire (2006)
Maximum entropy modeling of species geographic distributionsEcological Modelling, 190
A. Bayle, B. Carlson, V. Thierion, M. Isenmann, P. Choler (2019)
Improved Mapping of Mountain Shrublands Using the Sentinel-2 Red-Edge BandRemote. Sens., 11
A. Cord, D. Klein, D. Gernandt, Jorge Rosa, S. Dech (2014)
Remote sensing data can improve predictions of species richness by stacked species distribution models: a case study for Mexican pinesJournal of Biogeography, 41
(2000)
State of Nature in the EU-Methodological paper Methodologies under the Nature Directives reporting 2013-2018 and analysis for the State of Nature
M. Kuhn (2008)
Building Predictive Models in R Using the caret PackageJournal of Statistical Software, 28
M. Kuhn (2007)
The caret Package
Yongguang Zhang, M. Migliavacca, J. Peñuelas, W. Ju (2021)
Advances in hyperspectral remote sensing of vegetation traits and functionsRemote Sensing of Environment, 252
Corentin Bohl, J. Kass, R. Anderson (2019)
A new null model approach to quantify performance and significance for ecological niche models of species distributionsJournal of Biogeography, 46
R. Congalton, K. Green (1998)
Assessing the accuracy of remotely sensed data : principles and practices
M. Mahdianpari, B. Brisco, J. Granger, F. Mohammadimanesh, B. Salehi, Sarah Banks, Saeid Homayouni, L. Bourgeau-Chavez, Qihao Weng (2020)
The Second Generation Canadian Wetland Inventory Map at 10 Meters Resolution Using Google Earth EngineCanadian Journal of Remote Sensing, 46
E. Agrillo, F. Filipponi, Alice Pezzarossa, L. Casella, D. Smiraglia, A. Orasi, F. Attorre, A. Taramelli (2021)
Earth Observation and Biodiversity Big Data for Forest Habitat Types Classification and MappingRemote. Sens., 13
S. Gascoin, M. Grizonnet, Marine Bouchet, G. Salgues, O. Hagolle (2019)
Theia Snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 dataEarth System Science Data
J. Schnase, M. Carroll, R. Gill, Glenn Tamkin, Jun Li, S. Strong, T. Maxwell, M. Aronne (2020)
Toward a Monte Carlo approach to selecting climate variables in MaxEntPLoS ONE, 16
S. Stehman, G. Foody (2019)
Key issues in rigorous accuracy assessment of land cover productsRemote Sensing of Environment
P. Olofsson, G. Foody, M. Herold, S. Stehman, C. Woodcock, M. Wulder (2014)
Good practices for estimating area and assessing accuracy of land changeRemote Sensing of Environment, 148
N. Karasiak, J. Dejoux, C. Monteil, D. Sheeren (2021)
Spatial dependence between training and test sets: another pitfall of classification accuracy assessment in remote sensingMachine Learning, 111
A. Braun (2021)
More accurate less meaningful? A critical physical geographer’s reflection on interpreting remote sensing land-use analysesProgress in Physical Geography: Earth and Environment, 45
A. Maxwell, T. Warner, Fang Fang (2018)
Implementation of machine-learning classification in remote sensing: an applied reviewInternational Journal of Remote Sensing, 39
M. Adamo, C. Tarantino, V. Tomaselli, V. Kosmidou, Z. Petrou, I. Manakos, R. Lucas, C. Mücher, G. Veronico, C. Marangi, V. Pasquale, P. Blonda (2014)
Expert knowledge for translating land cover/use maps to General Habitat Categories (GHC)Landscape Ecology, 29
A. Guisan, S. Weiss, Andrew Weiss (1999)
GLM versus CCA spatial modeling of plant species distributionPlant Ecology, 143
S. Rapinel, Léa Panhelleux, Arnault Lalanne, L. Hubert‐Moy (2021)
Combined use of environmental and spectral variables with vegetation archives for large-scale modeling of grassland habitatsProgress in Physical Geography: Earth and Environment, 46
Samira Mobaied, N. Machon, Arnault Lalanne, B. Riera (2015)
The Spatiotemporal Dynamics of Forest-Heathland Communities over 60 Years in Fontainebleau, FranceISPRS Int. J. Geo Inf., 4
(2017)
À propos de la cartographie des habitats d'intérêt communautaire de la Directive européenne Habitats FauneFlore 92/43/CE
Canran Liu, M. White, G. Newell (2013)
Selecting thresholds for the prediction of species occurrence with presence‐only dataJournal of Biogeography, 40
Z. Venter, M. Sydenham (2021)
Continental-scale land cover mapping at 10 m resolution over Europe (ELC10)Remote. Sens., 13
(2018)
Detailed processing model for the weighted average synthesis processor (WASP) for sentinel-2
C. Merow, Matthew Smith, J. Silander (2013)
A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matterEcography, 36
Stefanie Stenzel, H. Feilhauer, B. Mack, A. Metz, S. Schmidtlein (2014)
Remote sensing of scattered Natura 2000 habitats using a one-class classifierInt. J. Appl. Earth Obs. Geoinformation, 33
G. Guillera‐Arroita, J. Lahoz‐Monfort, J. Elith (2014)
Maxent is not a presence–absence method: a comment on Thibaud et al.Methods in Ecology and Evolution, 5
Roozbeh Valavi, J. Elith, J. Lahoz‐Monfort, G. Guillera‐Arroita (2018)
blockCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution modelsbioRxiv
J. Elith, Steven Phillips, T. Hastie, Miroslav Dudík, Y. Chee, C. Yates (2011)
A statistical explanation of MaxEnt for ecologistsDiversity and Distributions, 17
(2015)
raster: Geographic Data Analysis and Modeling
(2017)
A propos de la cartographie des habitats d’int erêt communautaire de la Directive europ eenne Habitats FauneFlore 92/43/CE
(2015)
eudem-v1-1-user-guide, Documentation EEA User Manual. Indra Sistemas
Johannes Schmidt, F. Fassnacht, M. Förster, S. Schmidtlein (2018)
Synergetic use of Sentinel‐1 and Sentinel‐2 for assessments of heathland conservation statusRemote Sensing in Ecology and Conservation, 4
M. Kopecký, S. Čížková (2010)
Using topographic wetness index in vegetation ecology: does the algorithm matter?Applied Vegetation Science, 13
Xiao Feng, Daniel Park, Ye Liang, Ranjit Pandey, M. Papeş (2019)
Collinearity in ecological niche modeling: Confusions and challengesEcology and Evolution, 9
Ignacio Fernández, N. Morales (2019)
One-class land-cover classification using MaxEnt: the effect of modelling parameterization on classification accuracyPeerJ, 7
N. Trodd (1996)
Analysis and Representation of Heathland Vegetation from Near-Ground Level Remotely-Sensed Data, 5
Canran Liu, M. White, G. Newell (2018)
Detecting outliers in species distribution dataJournal of Biogeography, 45
F. Bensettiti, J. Rameau, H. Chevallier, M. Bartoli, J. Gourc (2001)
Connaissance et gestion des habitats et des espèces d'intérêt communautaire. Tome 1 : Habitats forestiers volume 2
R. Lucas, P. Blonda, P. Bunting, Gwawr Jones, J. Inglada, Marcela Arias, V. Kosmidou, Z. Petrou, I. Manakos, M. Adamo, Rebecca Charnock, C. Tarantino, C. Mücher, R. Jongman, H. Kramer, D. Arvor, Jo Ao, P. Honrado, P. Mairota
Article in Press G Model International Journal of Applied Earth Observation and Geoinformation the Earth Observation Data for Habitat Monitoring (eodham) System
T. Hengl, Jorge Jesus, G. Heuvelink, Maria González, M. Kilibarda, Aleksandar Blagotić, Shangguan Wei, Marvin Wright, X. Geng, B. Bauer-Marschallinger, M. Guevara, R. Vargas, R. MacMillan, N. Batjes, J. Leenaars, E. Ribeiro, Ichsani Wheeler, S. Mantel, B. Kempen (2017)
SoilGrids250m: Global gridded soil information based on machine learningPLoS ONE, 12
O. Hagolle, M. Huc, D. Pascual, G. Dedieu (2015)
A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 ImagesRemote. Sens., 7
G. Misra, F. Cawkwell, A. Wingler (2020)
Status of Phenological Research Using Sentinel-2 Data: A ReviewRemote. Sens., 12
M. Chytrý, L. Tichý, S. Hennekens, Ilona Knollová, J. Janssen, J. Rodwell, T. Peterka, C. Marcenó, F. Landucci, J. Danihelka, M. Hájek, Jürgen Dengler, P. Novák, Dominik Zukal, B. Jiménez‐Alfaro, L. Mucina, S. Abdulhak, S. Aćić, E. Agrillo, F. Attorre, E. Bergmeier, I. Biurrun, S. Boch, J. Bölöni, G. Bonari, T. Braslavskaya, H. Bruelheide, J. Campos, A. Čarni, L. Casella, M. Čuk, R. Ćušterevska, Els Bie, Pauline Delbosc, O. Demina, Y. Didukh, D. Dítě, T. Dziuba, J. Ewald, R. Gavilán, J. Gégout, Gianpietro Galdo, V. Golub, N. Goncharova, F. Goral, U. Graf, A. Indreica, M. Isermann, Ute Jandt, F. Jansen, J. Jansen, Anna Jasková, Martin Jiroušek, Z. Kącki, Veronika Kalníková, A. Kavgacı, L. Khanina, Andrey Korolyuk, M. Kozhevnikova, Anna Kuzemko, F. Küzmič, O. Kuznetsov, M. Laiviņš, I. Lavrinenko, O. Lavrinenko, M. Lebedeva, Zdeňka Lososová, T. Lysenko, Lise Maciejewski, C. Mardari, A. Marinšek, M. Napreenko, V. Onyshchenko, A. Pérez‐Haase, R. Pielech, V. Prokhorov, V. Rašomavičius, Maria Rojo, S. Rūsiņa, J. Schrautzer, J. Šibík, U. Šilc, Ž. Škvorc, V. Smagin, Z. Stančić, A. Stanisci, E. Tikhonova, T. Tonteri, Domas Uogintas, M. Valachovič, K. Vassilev, D. Vynokurov, W. Willner, S. Yamalov, Douglas Evans, Mette Lund, Rania Spyropoulou, E. Tryfon, J. Schaminée (2020)
EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitatsApplied Vegetation Science, 23
K. Hufkens, G. Thoonen, J. Borre, P. Scheunders, R. Ceulemans (2010)
Habitat reporting of a heathland site: Classification probabilities as additional information, a case studyEcol. Informatics, 5
C. Neumann (2020)
Habitat sampler—A sampling algorithm for habitat type delineation in remote sensing imageryDiversity and Distributions, 26
C. Tarantino, L. Forte, P. Blonda, S. Vicario, V. Tomaselli, C. Beierkuhnlein, M. Adamo (2021)
Intra-Annual Sentinel-2 Time-Series Supporting Grassland Habitat DiscriminationRemote. Sens., 13
G. Perrin, S. Rapinel, L. Hubert‐Moy, F. Bioret (2020)
Bioclimatic dataset of Metropolitan France under current conditions derived from the WorldClim modelData in Brief, 31
S. Rapinel, L. Hubert‐Moy (2021)
One-Class Classification of Natural Vegetation Using Remote Sensing: A ReviewRemote. Sens., 13
(2011)
Standardization of geographic data: the European inspire directive
Isabel Alonso, W. Härdtle (2015)
Resolving potential conflicts between different heathland ecosystem services through adaptive management.Ecological Questions, 21
(2011)
Standardization of geographic
R. Congalton, K. Green (2019)
Assessing the Accuracy of Remotely Sensed Data
(2018)
Package 'RSAGA
(2017)
HABREF v3. 1, r ef erentiel des typologies d'habitats et de v eg etation pour la France. Guide m ethodologique
D. Rocchini, V. Petras, A. Petrasova, N. Horning, Ludmila Furtkevicova, M. Neteler, Benjamin Leutner, M. Wegmann (2017)
Open data and open source for remote sensing training in ecologyEcol. Informatics, 40
A. Halladin-Dabrowska, A. Kania, D. Kopeć (2019)
The t-SNE Algorithm as a Tool to Improve the Quality of Reference Data Used in Accurate Mapping of Heterogeneous Non-Forest VegetationRemote. Sens., 12
R. Malinowski, S. Lewinski, M. Rybicki, Ewa Gromny, M. Jenerowicz, M. Krupiński, A. Nowakowski, Cezary Wojtkowski, Marcin Krupinski, Elke Krätzschmar, P. Schauer (2020)
Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 ImageryRemote. Sens., 12
Jan Schindler, J. Dymond, S. Wiser, J. Shepherd (2021)
Method for national mapping spatial extent of southern beech forest using temporal spectral signaturesInt. J. Appl. Earth Obs. Geoinformation, 102
Johannes Schmidt, F. Fassnacht, Christophe Neff, A. Lausch, B. Kleinschmit, M. Förster, S. Schmidtlein (2017)
Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation statusInt. J. Appl. Earth Obs. Geoinformation, 60
R. Bivand, T. Keitt, B. Rowlingson (2015)
Bindings for the Geospatial Data Abstraction Library
(2015)
eudem-v1-1-user-guide, Documentation EEA User Manual
M. Kuhn, Kjell Johnson (2013)
Applied Predictive Modeling
S. Suárez‐Seoane, B. Jiménez‐Alfaro, J. Obeso (2019)
Habitat-partitioning improves regional distribution models in multi-habitat species: a case study with the European bilberryBiodiversity and Conservation, 29
C. Neumann, G. Weiss, S. Schmidtlein, S. Itzerott, A. Lausch, D. Doktor, Maximilian Brell (2015)
Gradient-Based Assessment of Habitat Quality for Spectral Ecosystem MonitoringRemote. Sens., 7
Javier Lopatin, Klara Dolos, T. Kattenborn, F. Fassnacht (2019)
How canopy shadow affects invasive plant species classification in high spatial resolution remote sensingRemote Sensing in Ecology and Conservation, 5
Vítězslav Moudrý, V. Lecours, K. Gdulová, Lukáš Gábor, Lucie Moudrá, J. Kropáček, J. Wild (2018)
On the use of global DEMs in ecological modelling and the accuracy of new bare-earth DEMsEcological Modelling
S. Balakrishnama, A. Ganapathiraju (1995)
LINEAR DISCRIMINANT ANALYSIS - A BRIEF TUTORIAL
S. Fick, R. Hijmans (2017)
WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areasInternational Journal of Climatology, 37
R. Team (2014)
R: A language and environment for statistical computing.MSOR connections, 1
(2020)
2020) State of Nature in the EUMethodological paper Methodologies under the Nature
J. Inglada, Arthur Vincent, Marcela Arias, Benjamin Tardy, David Morin, Isabel Rodes (2017)
Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time SeriesRemote. Sens., 9
R. Lucas, K. Medcalf, Alan Brown, P. Bunting, J. Breyer, D. Clewley, S. Keyworth, P. Blackmore (2011)
Updating the Phase 1 habitat map of Wales, UK, using satellite sensor dataIsprs Journal of Photogrammetry and Remote Sensing, 66
Kristin Fenske, H. Feilhauer, M. Förster, M. Stellmes, B. Waske (2020)
Hierarchical classification with subsequent aggregation of heathland habitats using an intra-annual RapidEye time-seriesInt. J. Appl. Earth Obs. Geoinformation, 87
Mapping natural habitats remains challenging, especially at a national scale. Although new open‐access variables for vegetation and its environment and increased spatial resolution derived from satellite remote sensing data are available at the global scale, the relevance of these new variables for fine‐grained mapping of natural habitats at a national scale remains underexplored. This study aimed to map the fine‐grained pattern of four heathland habitats throughout France (550 000 km2). Environmental (bioclimatic, soil and topographic) and spectral (vegetation) variables derived from MODerate resolution Imaging Spectroradiometer, Advanced Spaceborne Thermal Emission and Reflection Radiometer, and Sentinel‐2 satellite data were analyzed using the MaxEnt classifier. Open‐access field databases were used to calibrate and validate the classification, based on the threshold‐independent area under the curve (AUC) index and the conventional F1‐score. For each heathland habitat, potential and actual areas were mapped using environmental and spectral variables, respectively. The results showed high classification accuracy for potential (AUC 0.92–0.99) and actual (AUC 0.88–0.99) suitability maps of the four heathland habitats. Visual interpretation of maps of the probability of occurrence indicated that the fine‐grained distribution of heathland habitat was detected satisfactorily. However, although the accuracy of the crisp map of combined classifications of actual heathland habitats was high (overall accuracy 0.72), estimated producer's accuracies in terms of proportion of area were low (<0.25). This study provides the first fine‐grained pattern maps of heathland habitats at a national scale, thus highlighting the value of combining environmental and spectral variables derived from open‐remote sensing data and open‐source field databases. These suitability maps could support the identification of heathland habitats in the framework of national conservation policies.
Remote Sensing in Ecology and Conservation – Wiley
Published: Aug 1, 2022
Keywords: Conservation status; heathland; MaxEnt; natural vegetation; satellite imagery; vegetation mapping
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.