Access the full text.
Sign up today, get DeepDyve free for 14 days.
N. Carballeira, Johanna Alicea (2001)
The first naturally occurring α-methoxylated branched-chain fatty acids from the phospholipids of Amphimedon complanataLipids, 36
S. O’Reilly, P. Pentlavalli, Paul Flanagan, C. Allen, X. Monteys, M. Szpak, B. Murphy, S. Jordan, B. Kelleher (2016)
Abundance and diversity of sedimentary bacterial communities in a coastal productive setting in the Western Irish SeaContinental Shelf Research, 113
M. Srivastava, O. Simakov, J. Chapman, B. Fahey, Marie Gauthier, T. Mitros, G. Richards, C. Conaco, Michael Dacre, U. Hellsten, C. Larroux, Nicholas Putnam, M. Stanke, Maja Adamska, A. Darling, S. Degnan, Todd Oakley, D. Plachetzki, Yufeng Zhai, M. Adamski, Andrew Calcino, S. Cummins, D. Goodstein, C. Harris, D. Jackson, S. Leys, S. Shu, B. Woodcroft, M. Vervoort, K. Kosik, G. Manning, B. Degnan, D. Rokhsar (2010)
The Amphimedon queenslandica genome and the evolution of animal complexityNature, 466
Ó. Monroig, D. Tocher, J. Navarro (2013)
Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular MechanismsMarine Drugs, 11
M. Garson, Mary Zimmermann, C. Battershill, Janet Holden, P. Murphy (1994)
The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine spongeAmphimedon terpenensisLipids, 29
N. Carballeira, V. Negrón, E. Reyes (1992)
Novel Monounsaturated Fatty Acids from the Sponges Amphimedon compressa and Mycale laevisJournal of Natural Products, 55
S. Hahn, I. Stoilov, T. Ha, D. Raederstorff, G. Doss, Hui Li, C. Djerassi (1988)
Biosynthetic studies of marine lipids. 17. The course of chain elongation and desaturation in long-chain fatty acids of marine spongesJournal of the American Chemical Society, 110
M. Lawson, I. Stoilov, J. Thompson, C. Djerassi (1988)
Cell membrane localization of sterols with conventional and unusual side chains in two marine demonspongesLipids, 23
D. Gold, S. O’Reilly, G. Luo, D. Briggs, R. Summons (2016)
Prospects for Sterane Preservation in Sponge Fossils from Museum Collections and the Utility of Sponge Biomarkers for Molecular ClocksBulletin of the Peabody Museum of Natural History, 57
J. Volkman, S. Barrett, S. Blackburn, M. Mansour, E. Sikes, F. Gelin (1998)
Microalgal biomarkers: A review of recent research developmentsOrganic Geochemistry, 29
N. Carballeira, F. Shalabi (1994)
Unusual lipids in the Caribbean sponges Amphimedon viridis and Desmapsamma anchorata.Journal of natural products, 57 8
J. Watson, B. Degnan, S. Degnan, J. O. Krömer (2014)
Methods in molecular biology, 1191
P. Nichols, J. Guckert, D. White (1986)
Determination of monosaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adductsJournal of Microbiological Methods, 5
G. Love, R. Summons (2015)
The molecular record of Cryogenian sponges – a response to Antcliffe (2013)Palaeontology, 58
J. Kornprobst, G. Barnathan (2010)
Demospongic Acids RevisitedMarine Drugs, 8
T. Hochmuth, Holger Niederkrüger, C. Gernert, A. Siegl, S. Taudien, M. Platzer, P. Crews, U. Hentschel, J. Piel (2010)
Linking Chemical and Microbial Diversity in Marine Sponges: Possible Role for Poribacteria as Producers of Methyl‐Branched Fatty AcidsChemBioChem, 11
T. Kaneda (1991)
Iso‐ and anteiso‐fatty acids in bacteria: biosynthesis, function, and taxonomic significance, 55
M. Kanehisa, S. Goto (2000)
KEGG: Kyoto Encyclopedia of Genes and GenomesNucleic acids research, 28 1
J. Giner, Hui Zhao, G. Boyer, M. Satchwell, R. Andersen (2009)
Sterol Chemotaxonomy of Marine Pelagophyte AlgaeChemistry & Biodiversity, 6
S. Leys, C. Larroux, M. Gauthier, Maja Adamska, B. Fahey, G. Richards, S. Degnan, B. Degnan (2008)
Isolation of amphimedon developmental material.CSH protocols, 2008
D. Raederstorff, A. Shu, J. Thompson, C. Djerassi (1987)
Biosynthetic studies of marine lipids. 11. Synthesis, biosynthesis, and absolute configuration of the internally branched demospongic acid, 22-methyl-5,9-octacosadienoic acidJournal of Organic Chemistry, 52
J. Botting, L. Muir, Yuandong Zhang, Xuan Ma, Junye Ma, Longwu Wang, Jianfang Zhang, Yanyan Song, X. Fang (2017)
Flourishing Sponge-Based Ecosystems after the End-Ordovician Mass ExtinctionCurrent Biology, 27
A. Stamatakis (2006)
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed modelsBioinformatics, 22 21
J. Watson, B. Degnan, S. Degnan, J. Krömer (2014)
Determining the biomass composition of a sponge holobiont for flux analysis.Methods in molecular biology, 1191
J. Watson, Timothy Brennan, B. Degnan, S. Degnan, J. Krömer (2014)
Analysis of the Biomass Composition of the Demosponge Amphimedon queenslandica on Heron Island Reef, AustraliaMarine Drugs, 12
V. Thiel, M. Blumenberg, J. Hefter, T. Pape, S. Pomponi, John Reed, J. Reitner, G. Wörheide, W. Michaelis (2002)
A chemical view of the most ancient metazoa – biomarker chemotaxonomy of hexactinellid spongesNaturwissenschaften, 89
C. Djerassi, W. Lam (1991)
Phospholipid Studies of Marine Organisms. Part 25. Sponge PhospholipidsChemInform, 22
G. Love, E. Grosjean, C. Stalvies, D. Fike, J. Grotzinger, A. Bradley, A. Kelly, M. Bhatia, W. Meredith, C. Snape, S. Bowring, D. Condon, R. Summons (2009)
Fossil steroids record the appearance of Demospongiae during the Cryogenian periodNature, 457
S. Eddy (2008)
A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance EstimationPLoS Computational Biology, 4
R. Desikan, K. Last, Rhian Harrett-Williams, C. Tagliavia, K. Harter, Richard Hooley, J. Hancock, S. Neill (2006)
Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis.The Plant journal : for cell and molecular biology, 47 6
W. Hofheinz, G. Oesterhelt (1979)
24‐Isopropylcholesterol and 22‐Dehydro‐24‐isopropylcholesterol, Novel Sterols from a SpongeHelvetica Chimica Acta, 62
K. Ritterbush, S. Rosas, F. Corsetti, D. Bottjer, A. West (2015)
Andean sponges reveal long-term benthic ecosystem shifts following the end-Triassic mass extinctionPalaeogeography, Palaeoclimatology, Palaeoecology, 420
M. Garson, Mary Zimmermann, M. Hoberg, R. Larsen, C. Battershill, P. Murphy (1993)
Isolation of brominated long-chain fatty acids from the phospholipids of the tropical marine spongeAmphimedon terpenensisLipids, 28
Kevin Chen, D. Durand, Martín Farach-Colton (2000)
NOTUNG: A Program for Dating Gene Duplications and Optimizing Gene Family TreesJournal of computational biology : a journal of computational molecular cell biology, 7 3-4
R. C. Edgar (2004)
MUSCLE: multiple sequence alignment with high accuracy and high throughput, 32
E. Desmond, S. Gribaldo (2009)
Phylogenomics of Sterol Synthesis: Insights into the Origin, Evolution, and Diversity of a Key Eukaryotic FeatureGenome Biology and Evolution, 1
A. Schreiber, G. Wörheide, V. Thiel (2006)
The fatty acids of calcareous sponges (Calcarea, Porifera).Chemistry and physics of lipids, 143 1-2
V. Thiel, A. Jenisch, G. Wörheide, A. Löwenberg, J. Reitner, W. Michaelis (1999)
Mid-chain branched alkanoic acids from “living fossil” demosponges: a link to ancient sedimentary lipids?Organic Geochemistry, 30
Niamh Redmond, J. Raleigh, R. SOEST, M. Kelly, Simon Travers, Brian Bradshaw, S. Vartia, Kelly Stephens, G. McCormack (2011)
Phylogenetic Relationships of the Marine Haplosclerida (Phylum Porifera) Employing Ribosomal (28S rRNA) and Mitochondrial (cox1, nad1) Gene Sequence DataPLoS ONE, 6
N. Carballeira, J. Thompson, E. Ayanoglu, C. Djerassi (1986)
Biosynthetic studies of marine lipids. 5. The biosynthesis of long-chain branched fatty acids in marine spongesJournal of Organic Chemistry, 51
D. Gold, J. Grabenstatter, Alex Mendoza, A. Riesgo, Iñaki Ruiz-Trillo, R. Summons (2016)
Sterol and genomic analyses validate the sponge biomarker hypothesisProceedings of the National Academy of Sciences, 113
Demosponges are a rich natural source of unusual lipids, some of which are of interest as geochemical biomarkers. Although demosponges are animals, they often host dense communities of microbial symbionts, and it is therefore unclear which lipids can be synthesized by the animal de novo, and which require input from the microbial community. To address this uncertainty, we analyzed the lipids of Amphimdeon queenslandica, the only demosponge with a published genome. We correlated the genetic and lipid repertoires of A. queenslandica to identify which biomarkers could potentially be synthesized and/or modified by the sponge. The fatty acid profile of A. queenslandica is dominated by an unusual Δ5,9 fatty acid (cis‐5,9‐hexacosadienoic acid)—similar to what has been found in other members of the Amphimdeon genus—while the sterol profile is dominated by C27‐C29 derivatives of cholesterol. Based on our analysis of the A. queenslandica genome, we predict that this sponge can synthesize sterols de novo, but it lacks critical genes necessary to synthesize basic saturated and unsaturated fatty acids. However, it does appear to have the genes necessary to modify simpler products into a more complex “algal‐like” assemblage of unsaturated fatty acids. Ultimately, our results provide additional support for the poriferan affinity of 24‐isopropylcholestanes in Neoproterozoic‐age rocks (the “sponge biomarker” hypothesis) and suggest that some algal proxies in the geochemical record could also have animal contributions.
Geobiology – Wiley
Published: Nov 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.