Access the full text.
Sign up today, get DeepDyve free for 14 days.
Brian Kristall, D. Kelley, M. Hannington, J. Delaney (2006)
Growth history of a diffusely venting sulfide structure from the Juan de Fuca Ridge: A petrological and geochemical studyGeochemistry, 7
K. Kashefi, Jason Tor, D. Holmes, Catherine Praagh, A. Reysenbach, D. Lovley (2002)
Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor.International journal of systematic and evolutionary microbiology, 52 Pt 3
R. Price, Ryan Lesniewski, K. Nitzsche, A. Meyerdierks, C. Saltikov, T. Pichler, J. Amend (2013)
Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separationFrontiers in Microbiology, 4
K. Kashefi, D. Lovley (2003)
Extending the Upper Temperature Limit for LifeScience, 301
M. Lilley, D. Butterfield, J. Lupton, E. Olson (2003)
Magmatic events can produce rapid changes in hydrothermal vent chemistryNature, 422
JM Tor, K Kashefi, DR Lovley (2001)
Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganismsProceedings of the National Academy of Sciences USA, 67
S Nakagawa, K Takai, F Inagaki, H Chiba, J Ishibashi, S Kataoka, H Hirayama, T Nunoura, K Horikoshi, Y Sako (2005)
Variability in microbial community and venting chemistry in a sediment?hosted backarc hydrothermal system: impacts of subseafloor phase?separationFrontiers in Microbiology, 54
M Starowicz, P Starowicz, J Żukrowski, J Przewoźnik, A Lemański, C Kapusta, J Banaś (2011)
Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled sizeExtremophiles, 13
K. Takai, Kentaro Nakamura (2010)
Compositional, Physiological and Metabolic Variability in Microbial Communities Associated with Geochemically Diverse, Deep-Sea Hydrothermal Vent Fluids
F. Berry, S. Skinner, Michael Thomas (1998)
Mössbauer spectroscopic examination of a single crystal ofJournal of Physics: Condensed Matter, 10
K. Weber, L. Achenbach, J. Coates (2006)
Microorganisms pumping iron: anaerobic microbial iron oxidation and reductionNature Reviews Microbiology, 4
E. Grave, A. Alboom (1991)
Evaluation of ferrous and ferric Mössbauer fractionsPhysics and Chemistry of Minerals, 18
E Murad (1992)
Studies of Magnetic Properties of Fine Particles and their Relevance in Materials ScienceFEMS Microbiology Ecology
D. Kelley, J. Delaney, D. Yoerger (2001)
Geology and venting characteristics of the Mothra hydrothermal field, Endeavour segment, Juan de Fuca RidgeGeology, 29
K. Kashefi, D. Lovley (2000)
Reduction of Fe(III), Mn(IV), and Toxic Metals at 100°C by Pyrobaculum islandicumApplied and Environmental Microbiology, 66
MK Tivey (2004)
The Subseafloor Biosphere at Mid?Ocean Ridges, Geophysical Monograph Series 144Applied and Environmental Microbiology
H. Eecke, D. Kelley, J. Holden (2008)
Abundances of Hyperthermophilic Autotrophic Fe(III) Oxide Reducers and Heterotrophs in Hydrothermal Sulfide Chimneys of the Northeastern Pacific OceanApplied and Environmental Microbiology, 75
HC Ver Eecke, NH Akerman, JA Huber, DA Butterfield, JF Holden (2013)
Growth kinetics and energetics of a deep?sea hyperthermophilic methanogen under varying environmental conditionsJournal of Microbiology, 5
M. Starowicz, P. Starowicz, J. Żukrowski, J. Przewoźnik, A. Lemański, C. Kapusta, J. Banaś (2011)
Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled sizeJournal of Nanoparticle Research, 13
K Takai, T Gamo, U Tsunogai, N Nakayama, H Hirayama, KH Nealson, K Horikoshi (2004)
Geochemical and microbiological evidence for a hydrogen?based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep?sea hydrothermal fieldEnvironmental Microbiology, 8
EJP Phillips, DR Lovley (1987)
Determination of Fe(III) and Fe(II) in oxalate extracts of sedimentsEarth and Planetary Science Letters, 51
J. Holden, J. Breier, K. Rogers, M. Schulte, B. Toner (2012)
Biogeochemical processes at hydrothermal vents : microbes and minerals, bioenergetics, and carbon fluxesOceanography, 25
E Murad, JH Johnston (1988)
M�ssbauer Spectroscopy Applied to Inorganic ChemistrySoil Science Society of America Journal
K. Takai, Tetsushi Komatsu, F. Inagaki, K. Horikoshi (2001)
Distribution of Archaea in a Black Smoker Chimney StructureApplied and Environmental Microbiology, 67
Michael Hentscher, W. Bach (2012)
Geochemically induced shifts in catabolic energy yields explain past ecological changes of diffuse vents in the East Pacific Rise 9°50'N areaGeochemical Transactions, 13
Y.-L. Li, S. Pfiffner, M. Dyar, H. Vali, K. Konhauser, D. Cole, A. Rondinone, T. Phelps (2009)
Degeneration of biogenic superparamagnetic magnetiteGeobiology, 7
RE Price, R Lesniewski, KS Nitzsche, A Meyerdierks, C Saltikov, T Pichler, JP Amend (2013)
Archaeal and bacterial diversity in an arsenic?rich shallow?sea hydrothermal system undergoing phase separationGeophysical Research Letters, 4
D. Lovley, D. Holmes, Kelly Nevin (1991)
Dissimilatory Fe(III) and Mn(IV) reduction.Advances in microbial physiology, 49
K Takai, T Komatsu, F Inagaki, K Horikoshi (2001)
Distribution of Archaea in a black smoker chimney structureJournal of Geophysical Research, 67
V. Robigou, J. Delaney, D. Stakes (1993)
Large massive sulfide deposits in a newly discovered active hydrothermal system, The High-Rise Field, Endeavour Segment, Juan De Fuca RidgeGeophysical Research Letters, 20
AP Roberts, R Weaver (2005)
Multiple mechanisms of remagnetization involving sedimentary greigiteJournal of Nanoparticle Research, 231
Jason Tor, K. Kashefi, D. Lovley (2001)
Acetate Oxidation Coupled to Fe(III) Reduction in Hyperthermophilic MicroorganismsApplied and Environmental Microbiology, 67
E. Murad, J. Johnston (1989)
Iron Oxides and OxyhydroxidesChemInform, 20
A. Roberts, R. Weaver (2004)
Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4)Earth and Planetary Science Letters, 231
M. Vargas, K. Kashefi, E. Blunt-Harris, D. Lovley (1998)
Microbiological evidence for Fe(III) reduction on early EarthNature, 395
F. Márquez-Linares, O. Uwakweh, N. Lopez, E. Chavez, R. Polanco, C. Morant, J. Sanz, E. Elizalde, C. Neira, S. Nieto, R. Roque-Malherbe (2011)
Study of the surface chemistry and morphology of single walled carbon nanotube–magnetite compositesJournal of Solid State Chemistry, 184
HC Ver Eecke, DS Kelley, JF Holden (2009)
Abundances of hyperthermophilic autotrophic Fe(III) oxide reducers and heterotrophs in hydrothermal sulfide chimneys of the northeastern Pacific OceanEarth and Planetary Science Letters, 75
Huaiyang Zhou, J. Li, Xiaotong Peng, Jun Meng, Fengping Wang, Yuncan Ai (2009)
Microbial diversity of a sulfide black smoker in main endeavour hydrothermal vent field, Juan de Fuca RidgeThe Journal of Microbiology, 47
R. Ambashta, S. Yusuf, M. Mukadam, Sher Singh, P. Wattal, D. Bahadur (2005)
Physical and chemical properties of nanoscale magnetite-based solvent extractantJournal of Magnetism and Magnetic Materials, 293
E. Phillips, D. Lovley (1987)
Determination of Fe(III) and Fe(II) in oxalate extracts of sedimentSoil Science Society of America Journal, 51
B. Kalska-Szostko, M. Zubowska, D. Satuła (2006)
Studies of the Magnetite Nanoparticles by Means of Mössbauer SpectroscopyActa Physica Polonica A, 109
DeGrave (1991)
Evaluation of ferrous M�ssbauer fractionsPhysics and Chemistry of Minerals, 18
K Takai, K Nakamura (2010)
Geomicrobiology: Molecular and Environmental PerspectiveEarth and Planetary Science Letters
HC Ver Eecke, DA Butterfield, JA Huber, MD Lilley, EJ Olson, KK Roe, LJ Evans, AY Merkel, HV Cantin, JF Holden (2012)
Hydrogen?limited growth of hyperthermophilic methanogens at deep?sea hydrothermal ventsThin Solid Films, 109
V Robigou, JR Delaney, DS Stakes (1993)
Large massive sulfide deposits in a newly discovered active hydrothermal system, the High?Rise Field, Endeavour Segment, Juan de Fuca RidgeApplied and Environmental Microbiology, 20
Berry (1998)
Fe-57 Mossbauer spectroscopic examination of a single crystal of Fe3O4Journal of Physics: Condensed Matter, 10
S. Nakagawa, K. Takai, F. Inagaki, H. Chiba, J. Ishibashi, Satoshi Kataoka, H. Hirayama, T. Nunoura, K. Horikoshi, Y. Sako (2005)
Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: Impacts of subseafloor phase-separation.FEMS microbiology ecology, 54 1
D. Butterfield, R. McDuff, M. Mottl, M. Lilley, J. Lupton, G. Massoth (1994)
Gradients in the composition of hydrothermal fluids from the Endeavour segment vent field: Phase separation and brine lossJournal of Geophysical Research, 99
A. Bandhu, S. Mukherjee, S. Acharya, S. Modak, S. Brahma, D. Das, P. Chakrabarti (2009)
Dynamic magnetic behaviour and Mössbauer effect measurements of magnetite nanoparticles prepared by a new technique in the co-precipitation methodSolid State Communications, 149
Shingo Kato, Y. Takano, T. Kakegawa, Hironori Oba, Kazuhiko Inoue, C. Kobayashi, M. Utsumi, K. Marumo, Kensei Kobayashi, Yuki Ito, J. Ishibashi, A. Yamagishi (2010)
Biogeography and Biodiversity in Sulfide Structures of Active and Inactive Vents at Deep-Sea Hydrothermal Fields of the Southern Mariana TroughApplied and Environmental Microbiology, 76
D. Lovley, E. Phillips (1986)
Organic Matter Mineralization with Reduction of Ferric Iron in Anaerobic SedimentsApplied and Environmental Microbiology, 51
I. Lyubutin, Chun-Rong Lin, Shin-Zong Lu, Yu-Jhan Siao, Yu. Korzhetskiy, T. Dmitrieva, Yuliya Dubinskaya, V. Pokatilov, A. Konovalova (2011)
High-temperature redistribution of cation vacancies and irreversible magnetic transitions in the Fe1−xS nanodisks observed by the Mössbauer spectroscopy and magnetic measurementsJournal of Nanoparticle Research, 13
K. Hassett, L. Stecher, D. Hendrickson (1980)
Polymer-anchored metal oxide particles. 1. Superparamagnetic magnetite microcrystals stabilized by lignosulfonateInorganic Chemistry, 19
JM Tor, DR Lovley (2001)
Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidusApplied and Environmental Microbiology, 3
L. Feinberg, J. Holden (2006)
Characterization of Dissimilatory Fe(III) versus NO3− Reduction in the Hyperthermophilic Archaeon Pyrobaculum aerophilumJournal of Bacteriology, 188
J. Delaney, V. Robigou, R. McDuff, M. Tivey (1992)
Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca RidgeJournal of Geophysical Research, 97
M. Tivey (2013)
Environmental conditions within active seafloor vent structures: Sensitivity to vent fluid composition and fluid flowGeophysical monograph, 144
B. Weiss, S. Kim, J. Kirschvink, R. Kopp, M. Sankaran, A. Kobayashi, A. Komeili (2004)
Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetiteEarth and Planetary Science Letters, 224
M. Knecht, H. Ebert, W. Bensch (1998)
Electronic and magnetic properties ofJournal of Physics: Condensed Matter, 10
L. Feinberg, R. Srikanth, R. Vachet, J. Holden (2007)
Constraints on Anaerobic Respiration in the Hyperthermophilic Archaea Pyrobaculum islandicum and Pyrobaculum aerophilumApplied and Environmental Microbiology, 74
M. Tivey, J. Delaney (1986)
Growth of large sulfide structures on the endeavour segment of the Juan de Fuca ridgeEarth and Planetary Science Letters, 77
E. Murad (1992)
Magnetic properties of fine-grained minerals
Liao Chang, A. Roberts, Yan Tang, B. Rainford, A. Muxworthy, Qianwang Chen (2008)
Fundamental magnetic parameters from pure synthetic greigite (Fe3S4)Journal of Geophysical Research, 113
(2009)
Dynamic magnetic behavior and M€
MK Tivey, JR Delaney (1986)
Growth of large sulfide structures on the Endeavour Segment of the Juan de Fuca RidgeProceedings of the National Academy of Sciences USA, 77
H. Vali, B. Weiss, Yi-Liang Li, S. Sears, S. Kim, J. Kirschvink, Chuanlun Zhang (2004)
Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15.Proceedings of the National Academy of Sciences of the United States of America, 101 46
(2004)
Formation of tabular single-domain © 2014
K. Takai, T. Gamo, U. Tsunogai, N. Nakayama, H. Hirayama, K. Nealson, K. Horikoshi (2004)
Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal fieldExtremophiles, 8
D. Kelley, S. Carbotte, D. Caress, D. Clague, J. Delaney, J. Gill, H. Hadaway, J. Holden, E. Hooft, J. Kellogg, M. Lilley, M. Stoermer, D. Toomey, R. Weekly, W. Wilcock (2012)
Endeavour Segment of the Juan de Fuca Ridge: One of the Most Remarkable Places on EarthOceanography, 25
M. Zając, K. Freindl, T. Ślęzak, M. Ślęzak, N. Spiridis, D. Wilgocka-Ślęzak, J. Korecki (2011)
Electronic and magnetic properties of ultra-thin epitaxial magnetite films on MgO(001)Thin Solid Films, 519
G. Flores, James Campbell, J. Kirshtein, Jennifer Meneghin, M. Podar, J. Steinberg, J. Seewald, M. Tivey, M. Voytek, Zamin-K. Yang, A. Reysenbach (2011)
Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge.Environmental microbiology, 13 8
H Vali, B Weiss, YL Li, SK Sears, SS Kim, JL Kirschvink, CL Zhang (2004)
Formation of tabular single?domain magnetite induced by Geobacter metallireducens GS?15Environmental Microbiology Reports, 101
M. Cannat, D. Sauter, C. Deplus, M. Tivey, D. Stakes, Terri Cook, Mark Harmington, S. Petersen, J. Smallwood, R. Staples, K. Richardson, R. White (1999)
A model for growth of steep-sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge: Results of a petrologic and geochemical study (Paper 1999JB900107)
K. Kashefi, Bruce Moskowitz, D. Lovley (2008)
Characterization of extracellular minerals produced during dissimilatory Fe(III) and U(VI) reduction at 100 °C by Pyrobaculum islandicumGeobiology, 6
H. Eecke, N. Akerman, J. Huber, D. Butterfield, J. Holden (2013)
Growth kinetics and energetics of a deep-sea hyperthermophilic methanogen under varying environmental conditions.Environmental microbiology reports, 5 5
J. Hobbie, R. Daley, S. Jasper (1977)
Use of nuclepore filters for counting bacteria by fluorescence microscopyApplied and Environmental Microbiology, 33
M. Dyar, E. Jawin, E. Breves, G. Marchand, M. Nelms, M. Lane, S. Mertzman, D. Bish, J. Bishop (2014)
Mössbauer parameters of iron in phosphate minerals: Implications for interpretation of martian dataAmerican Mineralogist, 99
H. Eecke, D. Butterfield, J. Huber, M. Lilley, E. Olson, K. Roe, L. Evans, A. Merkel, Holly Cantin, J. Holden (2012)
Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal ventsProceedings of the National Academy of Sciences, 109
MK Tivey, DS Stakes, TL Cook, MD Hannington, S Petersen (1999)
A model for growth of steep?sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge: results of a petrological and geochemical studyNature, 104
Jason Tor, D. Lovley (2001)
Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus.Environmental microbiology, 3 4
Hyperthermophilic iron reducers are common in hydrothermal chimneys found along the Endeavour Segment in the northeastern Pacific Ocean based on culture‐dependent estimates. However, information on the availability of Fe(III) (oxyhydr) oxides within these chimneys, the types of Fe(III) (oxyhydr) oxides utilized by the organisms, rates and environmental constraints of hyperthermophilic iron reduction, and mineral end products is needed to determine their biogeochemical significance and are addressed in this study. Thin‐section petrography on the interior of a hydrothermal chimney from the Dante edifice at Endeavour showed a thin coat of Fe(III) (oxyhydr) oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite, and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The iron sulfide minerals were likely oxidized to Fe(III) (oxyhydr) oxide with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture‐dependent estimates of hyperthermophilic iron reducer abundances in this sample were 1740 and 10 cells per gram (dry weight) of material from the outer surface and the marcasite‐sphalerite‐rich interior, respectively. Two hyperthermophilic iron reducers, Hyperthermus sp. Ro04 and Pyrodictium sp. Su06, were isolated from other active hydrothermal chimneys on the Endeavour Segment. Strain Ro04 is a neutrophilic (pHopt 7–8) heterotroph, while strain Su06 is a mildly acidophilic (pHopt 5), hydrogenotrophic autotroph, both with optimal growth temperatures of 90–92 °C. Mössbauer spectroscopy of the iron oxides before and after growth demonstrated that both organisms form nanophase (<12 nm) magnetite [Fe3O4] from laboratory‐synthesized ferrihydrite [Fe10O14(OH)2] with no detectable mineral intermediates. They produced up to 40 mm Fe2+ in a growth‐dependent manner, while all abiotic and biotic controls produced <3 mm Fe2+. Hyperthermophilic iron reducers may have a growth advantage over other hyperthermophiles in hydrothermal systems that are mildly acidic where mineral weathering at increased temperatures occurs.
Geobiology – Wiley
Published: Jan 1, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.