Access the full text.
Sign up today, get DeepDyve free for 14 days.
Wenjun Liu, E. Sakr, P. Schaeffer, H. Talbot, Janina Donisi, T. Härtner, E. Kannenberg, E. Takano, M. Rohmer (2014)
Ribosylhopane, a Novel Bacterial Hopanoid, as Precursor of C35 Bacteriohopanepolyols in Streptomyces coelicolor A3(2)ChemBioChem, 15
M. Pachiadaki, E. Sintes, Kristin Bergauer, Julia Brown, N. Record, B. Swan, M. Mathyer, S. Hallam, P. López‐García, Y. Takaki, T. Nunoura, T. Woyke, G. Herndl, R. Stepanauskas (2017)
Major role of nitrite-oxidizing bacteria in dark ocean carbon fixationScience, 358
A. Bradley, P. Swanson, E. Muller, F. Bringel, Sean Caroll, A. Pearson, S. Vuilleumier, C. Marx (2017)
Hopanoid-free Methylobacterium extorquens DM4 overproduces carotenoids and has widespread growth impairmentPLoS ONE, 12
A. Doxey, Daniel Kurtz, M. Lynch, Laura Sauder, J. Neufeld (2014)
Aquatic metagenomes implicate Thaumarchaeota in global cobalamin productionThe ISME Journal, 9
T. Richardson, G. Jackson (2007)
Small Phytoplankton and Carbon Export from the Surface OceanScience, 315
G. Ourisson, P. Albrecht (1992)
HOPANOIDS. I: GEOHOPANOIDS : THE MOST ABUDANT NATURAL PRODUCTS ON EARTH ?Accounts of Chemical Research, 25
Sebastian Lücker, Boris Nowka, T. Rattei, E. Spieck, H. Daims (2012)
The Genome of Nitrospina gracilis Illuminates the Metabolism and Evolution of the Major Marine Nitrite OxidizerFrontiers in Microbiology, 4
H. Talbot, M. Rohmer, P. Farrimond (2007)
Structural characterisation of unsaturated bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry.Rapid communications in mass spectrometry : RCM, 21 10
A. Santoro, K. Casciotti, C. Francis (2010)
Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current.Environmental microbiology, 12 7
C. Schmerk, P. Welander, Mohamad Hamad, Katie Bain, M. Bernards, R. Summons, M. Valvano (2015)
Elucidation of the Burkholderia cenocepacia hopanoid biosynthesis pathway uncovers functions for conserved proteins in hopanoid-producing bacteria.Environmental microbiology, 17 3
M. Warren, E. Raux, H. Schubert, J. Escalante‐Semerena (2002)
The biosynthesis of adenosylcobalamin (vitamin B12).Natural product reports, 19 4
M. Lunau, A. Lemke, K. Walther, Willm Martens-Habbena, M. Simon (2005)
An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy.Environmental microbiology, 7 7
I. Berg, Daniel Kockelkorn, W. Ramos-Vera, Rafael Say, J. Zarzycki, Michael Hügler, B. Alber, B. Alber, G. Fuchs (2010)
Autotrophic carbon fixation in archaeaNature Reviews Microbiology, 8
Maartje Kessel, D. Speth, M. Albertsen, P. Nielsen, H. Camp, B. Kartal, M. Jetten, Sebastian Lücker (2015)
Complete nitrification by a single microorganismNature, 528
W. Fischer, R. Summons, A. Pearson (2005)
Targeted genomic detection of biosynthetic pathways: anaerobic production of hopanoid biomarkers by a common sedimentary microbeGeobiology, 3
E. Spieck, E. Bock (2015)
The Lithoautotrophic Nitrite-Oxidizing BacteriaBergey's Manual of Systematics of Archaea and Bacteria
W. Whitman (2016)
Bergey's Manual of Systematics of Archaea and Bacteria
K. Kitzinger, H. Koch, S. Lücker, C. J. Sedlacek, C. Herbold, J. Schwarz, A. Daebeler, A. J. Mueller, M. Lukumbuzya, S. Romano, N. Leisch, S. M. Karst, R. Kirkegaard, M. Albertsen, P. H. Nielsen, M. Wagner, H. Daims (2018)
Characterization of the first ?Candidatus Nitrotoga? isolate reveals metabolic versatility and separate evolution of widespread nitrite?oxidizing bacteria, 9
S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman (1990)
Basic local alignment search tool.Journal of molecular biology, 215 3
Christian Quast, E. Pruesse, Pelin Yilmaz, Jan Gerken, Timmy Schweer, P. Yarza, J. Peplies, F. Glöckner (2012)
The SILVA ribosomal RNA gene database project: improved data processing and web-based toolsNucleic Acids Research, 41
Chia‐Hung Wu, M. Bialecka-Fornal, D. Newman (2015)
Methylation at the C-2 position of hopanoids increases rigidity in native bacterial membraneseLife, 4
Jessika Füssel, Sebastian Lücker, Pelin Yilmaz, Boris Nowka, Maartje Kessel, Patric Bourceau, Philipp Hach, S. Littmann, Jasmine Berg, E. Spieck, H. Daims, M. Kuypers, P. Lam (2017)
Adaptability as the key to success for the ubiquitous marine nitrite oxidizer NitrococcusScience Advances, 3
M. Alawi, A. Lipski, Tina Sanders, E. Pfeiffer, E. Spieck (2007)
Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian ArcticThe ISME Journal, 1
A. Preuss, R. Schauder, G. Fuchs, W. Stichler (1989)
Carbon Isotope Fractionation by Autotrophic Bacteria with Three Different C02 Fixation PathwaysZeitschrift für Naturforschung C, 44
H. Talbot, E. McClymont, G. Inglis, R. Evershed, R. Pancost (2016)
Origin and preservation of bacteriohopanepolyol signatures in Sphagnum peat from Bissendorfer Moor (Germany)Organic Geochemistry, 97
A. Mangiarotti, Darío Genovese, C. Naumann, Mariela Monti, N. Wilke (2019)
Hopanoids, like sterols, modulate dynamics, compaction, phase segregation and permeability of membranes.Biochimica et biophysica acta. Biomembranes
L. Quandt, G. Gottschalk, H. Ziegler, W. Stichler (1977)
Isotope discrimination by photosynthetic bacteriaFems Microbiology Letters, 1
J. Damsté, W. Rijpstra, S. Dedysh, B. Foesel, L. Villanueva (2017)
Pheno- and Genotyping of Hopanoid Production in AcidobacteriaFrontiers in Microbiology, 8
Bettie Ward, A. Carlucci (1985)
Marine Ammonia- and Nitrite-Oxidizing Bacteria: Serological Diversity Determined by Immunofluorescence in Culture and in the EnvironmentApplied and Environmental Microbiology, 50
Ivica Letunic, P. Bork (2016)
Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other treesNucleic Acids Research, 44
Alejandro Palomo, A. Pedersen, Jane Fowler, A. Dechesne, Thomas Sicheritz-Pontén, B. Smets (2017)
Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox NitrospiraThe ISME Journal, 12
P. Welander, D. Doughty, D. Doughty, Chia-Hung Wu, S. Méhay, R. Summons, Dianne Newman, Dianne Newman (2012)
Identification and characterization of Rhodopseudomonas palustris TIE‐1 hopanoid biosynthesis mutantsGeobiology, 10
H. Close, S. Shah, A. Ingalls, A. Diefendorf, Eoin Brodie, R. Hansman, K. Freeman, L. Aluwihare, A. Pearson (2013)
Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyreProceedings of the National Academy of Sciences, 110
Barbara Bayer, M. Saito, M. McIlvin, Sebastian Lücker, D. Moran, Thomas Lankiewicz, C. Dupont, A. Santoro (2020)
Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditionsThe ISME Journal, 15
A. Kasprak, J. Sepúlveda, Rosalyn Price-Waldman, K. Williford, S. Schoepfer, J. Haggart, P. Ward, R. Summons, J. Whiteside (2015)
Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinctionGeology, 43
J. Sáenz, E. Sezgin, P. Schwille, K. Simons (2012)
Functional convergence of hopanoids and sterols in membrane orderingProceedings of the National Academy of Sciences, 109
D. Birgel, J. Peckmann, Sandra Klautzsch, V. Thiel, J. Reitner (2006)
Anaerobic and Aerobic Oxidation of Methane at Late Cretaceous Seeps in the Western Interior Seaway, USAGeomicrobiology Journal, 23
J. Sáenz, S. Wakeham, T. Eglinton, R. Summons (2011)
New constraints on the provenance of hopanoids in the marine geologic record: Bacteriohopanepolyols in marine suboxic and anoxic environmentsOrganic Geochemistry, 42
Brittany Belin, Nicolas Busset, E. Giraud, A. Molinaro, A. Silipo, D. Newman (2018)
Hopanoid lipids: from membranes to plant–bacteria interactionsNature Reviews Microbiology, 16
P. Cappellen, E. Ingall (1996)
Redox Stabilization of the Atmosphere and Oceans by Phosphorus-Limited Marine ProductivityScience, 271
Catherine Polik, F. Elling, A. Pearson (2018)
Impacts of Paleoecology on the TEX86 Sea Surface Temperature Proxy in the Pliocene‐Pleistocene Mediterranean SeaPaleoceanography and Paleoclimatology, 33
S. Wakeham, R. Amann, K. Freeman, E. Hopmans, B. Jørgensen, Isabell Putnam, Stefan Schouten, J. Damsté, H. Talbot, D. Woebken (2007)
Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker studyOrganic Geochemistry, 38
Anne Bodlenner, Wenjun Liu, Guillaume Hirsch, P. Schaeffer, M. Blumenberg, R. Lendt, D. Tritsch, W. Michaelis, M. Rohmer (2015)
C35 Hopanoid Side Chain Biosynthesis: Reduction of Ribosylhopane into Bacteriohopanetetrol by a Cell‐Free System Derived from Methylobacterium organophilumChemBioChem, 16
T. Tang, W. Mohr, S. Sattin, D. Rogers, P. Girguis, A. Pearson (2017)
Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180T grown photoautotrophically and photoheterotrophicallyGeobiology, 15
Chun Zhu, H. Talbot, T. Wagner, Jianming Pan, R. Pancost (2011)
Distribution of hopanoids along a land to sea transect: Implications for microbial ecology and the use of hopanoids in environmental studiesLimnology and Oceanography, 56
E. Matys, Julio Sepúlveda, Silvio Pantoja, Carina Lange, M. Caniupán, Frank Lamy, R. Summons (2017)
Bacteriohopanepolyols along redox gradients in the Humboldt Current System off northern ChileGeobiology, 15
F. Elling, Thomas Evans, J. Hemingway, Jenan Kharbush, V. Nathan, B. Bayer, A. Santoro, E. Spieck, R. Summons, A. Pearson (2021)
Marine and Terrestrial Nitrifying Bacteria are Sources of Diverse BacteriohopanepolyolsIMOG 2021
M. Kuypers, P. Blokker, E. Hopmans, H. Kinkel, R. Pancost, Stefan Schouten, J. Damsté (2002)
Archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1bPalaeogeography, Palaeoclimatology, Palaeoecology, 185
Alison Berry, O. Harriott, Robert Moreau, S. Osman, David Benson, A. Jones (1993)
Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase.Proceedings of the National Academy of Sciences of the United States of America, 90 13
H. Talbot, L. Handley, C. Spencer-Jones, B. Dinga, E. Schefuß, P. Mann, J. Poulsen, R. Spencer, J. Wabakanghanzi, T. Wagner (2014)
Variability in aerobic methane oxidation over the past 1.2 Myrs recorded in microbial biomarker signatures from Congo fan sediments.Geochimica et Cosmochimica Acta, 133
D. Menzel, E. Hopmans, Stefan Schouten, J. Damsté (2006)
Membrane tetraether lipids of planktonic Crenarchaeota in Pliocene sapropels of the eastern Mediterranean SeaPalaeogeography, Palaeoclimatology, Palaeoecology, 239
T. Erb (2011)
Carboxylases in Natural and Synthetic Microbial PathwaysApplied and Environmental Microbiology, 77
S. Watson, J. Waterbury (1971)
Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp.Archiv für Mikrobiologie, 77
C. Spencer-Jones (2016)
Novel concepts derived from microbial biomarkers in the Congo system : implications for continental methane cycling
K. Ichihara, Yumeto Fukubayashi (2010)
Preparation of fatty acid methyl esters for gas-liquid chromatography[S]Journal of Lipid Research, 51
Kento Ishii, Hirotsugu Fujitani, Y. Sekiguchi, S. Tsuneda (2020)
Physiological and genomic characterization of a new "Candidatus Nitrotoga" isolate.Environmental microbiology
Jenan Kharbush, J. Ugalde, S. Hogle, E. Allen, L. Aluwihare (2013)
Composite Bacterial Hopanoids and Their Microbial Producers across Oxygen Gradients in the Water Column of the California CurrentApplied and Environmental Microbiology, 79
J. Ricci, Maureen Coleman, P. Welander, A. Sessions, R. Summons, J. Spear, D. Newman (2013)
Diverse capacity for 2-methylhopanoid production correlates with a specific ecological nicheThe ISME Journal, 8
E. Bock, Hilke Sundermeyer-Klinger, E. Stackebrandt (1983)
New facultative lithoautotrophic nitrite-oxidizing bacteriaArchives of Microbiology, 136
E. Spieck, Katharina Sass, S. Keuter, Sophia Hirschmann, M. Spohn, D. Indenbirken, L. Kop, Sebastian Lücker, A. Giaveno (2020)
Defining Culture Conditions for the Hidden Nitrite-Oxidizing Bacterium NitrolanceaFrontiers in Microbiology, 11
Sky Rashby, A. Sessions, R. Summons, D. Newman (2007)
Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototrophProceedings of the National Academy of Sciences, 104
J. Sáenz (2010)
Exploring the distribution and physiological roles of bacterial membrane lipids in the marine environment
D. McNevin, M. Badger, S. Whitney, S. Caemmerer, G. Tcherkez, G. Farquhar (2007)
Differences in Carbon Isotope Discrimination of Three Variants of D-Ribulose-1,5-bisphosphate Carboxylase/Oxygenase Reflect Differences in Their Catalytic Mechanisms*♦Journal of Biological Chemistry, 282
B. Ward, H. Glover, F. Lipschultz (1989)
Chemoautotrophic activity and nitrification in the oxygen minimum zone off Peru, 36
M. Hayatsu, Kanako Tago, I. Uchiyama, A. Toyoda, Yong Wang, Y. Shimomura, T. Okubo, F. Kurisu, Y. Hirono, K. Nonaka, H. Akiyama, T. Itoh, H. Takami (2017)
An acid-tolerant ammonia-oxidizing γ-proteobacterium from soilThe ISME Journal, 11
P. Welander, R. Summons (2012)
Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid productionProceedings of the National Academy of Sciences, 109
E. Spieck, A. Lipski (2011)
Research on nitrification and related processes, part A, Methods in enzymology
Anna Mueller, Man-Young Jung, C. Strachan, C. Herbold, R. Kirkegaard, M. Wagner, H. Daims (2020)
Genomic and kinetic analysis of novel Nitrospinae enriched by cell sortingThe ISME Journal, 15
D. Sorokin, D. Sorokin, Sebastian Lücker, D. Vejmelkova, N. Kostrikina, R. Kleerebezem, W. Rijpstra, J. Damsté, D. Paslier, D. Paslier, Gerard Muyzer, Gerard Muyzer, M. Wagner, M. Loosdrecht, H. Daims (2012)
Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum ChloroflexiThe ISME Journal, 6
P. Welander, Maureen Coleman, A. Sessions, R. Summons, D. Newman (2010)
Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanesProceedings of the National Academy of Sciences, 107
S. Lengger, D. Rush, J. Mayser, J. Blewett, R. Schwartz-Narbonne, H. Talbot, J. Middelburg, M. Jetten, S. Schouten, J. Damsté, R. Pancost (2019)
Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM)Global Biogeochemical Cycles, 33
H. Koops, A. Pommerening-Röser (2015)
The Lithoautotrophic Ammonia‐Oxidizing BacteriaBergey's Manual of Systematics of Archaea and Bacteria
F. Elling, J. Hemingway, T. Evans, Jenan Kharbush, E. Spieck, R. Summons, A. Pearson (2020)
Vitamin B12-dependent biosynthesis ties amplified 2-methylhopanoid production during oceanic anoxic events to nitrificationProceedings of the National Academy of Sciences, 117
K. Katoh, D. Standley (2013)
MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and UsabilityMolecular Biology and Evolution, 30
P. Welander, R. Hunter, Lichun Zhang, A. Sessions, R. Summons, D. Newman (2009)
Hopanoids Play a Role in Membrane Integrity and pH Homeostasis in Rhodopseudomonas palustris TIE-1Journal of Bacteriology, 191
H. Talbot, J. Bischoff, G. Inglis, M. Collinson, R. Pancost (2016)
Polyfunctionalised bio- and geohopanoids in the Eocene Cobham LigniteOrganic Geochemistry, 96
E. Spieck, A. Lipski (2011)
Cultivation, growth physiology, and chemotaxonomy of nitrite-oxidizing bacteria.Methods in enzymology, 486
Jenan Kharbush, Kanchi Kejriwal, L. Aluwihare (2016)
Distribution and Abundance of Hopanoid Producers in Low-Oxygen Environments of the Eastern Pacific OceanMicrobial Ecology, 71
J. Brocks, A. Pearson (2005)
Building the Biomarker Tree of LifeReviews in Mineralogy & Geochemistry, 59
D. Briggs, R. Summons (2014)
Ancient biomolecules: Their origins, fossilization, and role in revealing the history of lifeBioEssays, 36
D. Doughty, R. Hunter, R. Summons, D. Newman (2009)
2‐Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme: geobiological implicationsGeobiology, 7
Dianne Newman, C. Neubauer, Jessica Ricci, Chia‐Hung Wu, A. Pearson (2016)
Cellular and Molecular Biological Approaches to Interpreting Ancient BiomarkersAnnual Review of Earth and Planetary Sciences, 44
M. Kuypers, P. Blokker, J. Erbacher, H. Kinkel, R. Pancost, Stefan Schouten, J. Damsté (2001)
Massive Expansion of Marine Archaea During a Mid-Cretaceous Oceanic Anoxic EventScience, 293
H.‐P. Koops, U. Purkhold, A. Pommerening‐Röser, G. Timmermann, M. Wagner (2006)
The prokaryotes
K. Heal, W. Qin, F. Ribalet, Anthony Bertagnolli, Willow Coyote-Maestas, L. Hmelo, James Moffett, A. Devol, E. Armbrust, D. Stahl, A. Ingalls (2016)
Two distinct pools of B12 analogs reveal community interdependencies in the oceanProceedings of the National Academy of Sciences, 114
J. Brocks, J. Banfield (2009)
Unravelling ancient microbial history with community proteogenomics and lipid geochemistryNature Reviews Microbiology, 7
M. Seemann, P. Bisseret, J. Tritz, A. Hooper, M. Rohmer (1999)
Novel bacterial triterpenoids of the hopane series from Nitrosomonas europaea and their significance for the formation of the C35 bacteriohopane skeletonTetrahedron Letters, 40
M. Rohmer, P. Bouvier-Navé, G. Ourisson (1984)
Distribution of Hopanoid Triterpenes in ProkaryotesMicrobiology, 130
V. Thiel, M. Blumenberg, T. Pape, R. Seifert, W. Michaelis (2003)
Unexpected occurrence of hopanoids at gas seeps in the Black SeaOrganic Geochemistry, 34
M. Kuypers, Y. Breugel, Stefan Schouten, E. Erba, J. Damsté (2004)
N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic eventsGeology, 32
J. Collister, R. Summons, E. Lichtfouse, J. Hayes (1992)
An isotopic biogeochemical study of the Green River oil shale.Organic geochemistry, 19 1-3
W. Mook, J. Bommerson, W. Staverman (1974)
CARBON ISOTOPE FRACTIONATION BETWEEN DISSOLVED BICARBONATE AND GASEOUS CARBON-DIOXIDEEarth and Planetary Science Letters, 22
J. D. H. Strickland, T. R. Parsons (1972)
A practical handbook of seawater analysis
D. Rush, Kate Osborne, D. Birgel, A. Kappler, H. Hirayama, J. Peckmann, S. Poulton, J. Nickel, K. Mangelsdorf, M. Kalyuzhnaya, F. Sidgwick, H. Talbot (2016)
The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine SystemsPLoS ONE, 11
P. Falkowski, R. Barber, V. Smetácek (1998)
Biogeochemical Controls and Feedbacks on Ocean Primary ProductionScience, 281 5374
K. Kitzinger, Hanna Koch, Sebastian Lücker, C. Sedlacek, C. Herbold, J. Schwarz, Anne Daebeler, Anna Mueller, Michael Lukumbuzya, S. Romano, Nikolaus Leisch, S. Karst, R. Kirkegaard, M. Albertsen, P. Nielsen, M. Wagner, Holger Daimsa (2018)
Aalborg Universitet Characterization of the first “ Candidatus nitrotoga ” isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria
Christian Sohlenkamp, O. Geiger (2016)
Bacterial membrane lipids: diversity in structures and pathways.FEMS microbiology reviews, 40 1
C. Berndmeyer, V. Thiel, O. Schmale, M. Blumenberg (2013)
Biomarkers for aerobic methanotrophy in the water column of the stratified Gotland Deep (Baltic Sea)Organic Geochemistry, 55
H. Talbot, R. Summons, L. Jahnke, C. Cockell, M. Rohmer, P. Farrimond (2008)
Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settingsOrganic Geochemistry, 39
R. Summons, L. Jahnke, J. Hope, G. Logan (1999)
2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesisNature, 400
G. Ourisson, M. Rohmer (1992)
Hopanoids. 2. Biohopanoids: a novel class of bacterial lipidsAccounts of Chemical Research, 25
A. Bradley, A. Pearson, J. Sáenz, C. Marx (2010)
Adenosylhopane: The first intermediate in hopanoid side chain biosynthesisOrganic Geochemistry, 41
Jessica Ricci, A. Michel, Dianne Newman, Dianne Newman (2015)
Phylogenetic analysis of HpnP reveals the origin of 2‐methylhopanoid production in AlphaproteobacteriaGeobiology, 13
Jenan Kharbush, Luke Thompson, M. Haroon, R. Knight, L. Aluwihare (2018)
Hopanoid‐producing bacteria in the Red Sea include the major marine nitrite oxidizersFEMS Microbiology Ecology, 94
M. Blumenberg, C. Berndmeyer, M. Moros, M. Muschalla, O. Schmale, V. Thiel (2012)
Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic SeaBiogeosciences, 10
David Poger, A. Mark (2013)
The relative effect of sterols and hopanoids on lipid bilayers: when comparable is not identical.The journal of physical chemistry. B, 117 50
M. Meer, Stefan Schouten, J. Damsté (1998)
The effect of the reversed tricarboxylic acid cycle on the 13C contents of bacterial lipidsOrganic Geochemistry, 28
H. Daims, Sebastian Lücker, M. Wagner (2016)
A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria.Trends in microbiology, 24 9
E. Bligh, Dyer W.J.A. (1959)
A rapid method of total lipid extraction and purification.Canadian journal of biochemistry and physiology, 37 8
Bertrand Caron, A. Mark, David Poger (2014)
Some Like It Hot: The Effect of Sterols and Hopanoids on Lipid Ordering at High Temperature.The journal of physical chemistry letters, 5 22
A. Pearson, Sarah Page, T. Jorgenson, W. Fischer, M. Higgins (2007)
Novel hopanoid cyclases from the environment.Environmental microbiology, 9 9
E. Spieck, M. Spohn, K. Wendt, E. Bock, J. Shively, Jeroen Frank, D. Indenbirken, M. Alawi, Sebastian Lücker, Jennifer Hüpeden (2019)
Extremophilic nitrite-oxidizing Chloroflexi from Yellowstone hot springsThe ISME Journal, 14
F. Elling, J. Hemingway, Jenan Kharbush, K. Becker, Catherine Polik, A. Pearson (2021)
Linking diatom-diazotroph symbioses to nitrogen cycle perturbations and deep-water anoxia: Insights from Mediterranean sapropel eventsEarth and Planetary Science Letters, 571
S. Sakata, J. Hayes, M. Rohmer, A. Hooper, M. Seemann (2008)
Stable carbon-isotopic compositions of lipids isolated from the ammonia-oxidizing chemoautotroph Nitrosomonas europaeaOrganic Geochemistry, 39
Andrew Boddicker, Annika Mosier (2018)
Genomic profiling of four cultivated Candidatus Nitrotoga spp. predicts broad metabolic potential and environmental distributionThe ISME Journal, 12
Helen Sturt, R. Summons, Kristin Smith, M. Elvert, K. Hinrichs (2004)
Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry--new biomarkers for biogeochemistry and microbial ecology.Rapid communications in mass spectrometry : RCM, 18 6
T. Williams, Chuanlun Zhang, James Scott, D. Bazylinski (2006)
Evidence for Autotrophy via the Reverse Tricarboxylic Acid Cycle in the Marine Magnetotactic Coccus Strain MC-1Applied and Environmental Microbiology, 72
T. Tyrrell (1999)
The relative influences of nitrogen and phosphorus on oceanic primary productionNature, 400
R. Sirevag, Bob Buchanan, J. Berry, J. Troughton (1977)
Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation techniqueArchives of Microbiology, 112
F. Schopfer, N. Khoo (2019)
Nitro-Fatty Acid Logistics: Formation, Biodistribution, Signaling, and PharmacologyTrends in Endocrinology & Metabolism, 30
G. Ourisson, M. Rohmer, K. Poralla (1987)
Prokaryotic hopanoids and other polyterpenoid sterol surrogates.Annual review of microbiology, 41
H. Daims, E. Lebedeva, P. Pjevac, P. Han, C. Herbold, M. Albertsen, N. Jehmlich, M. Palatinszky, J. Vierheilig, A. Bulaev, R. Kirkegaard, M. Bergen, T. Rattei, B. Bendinger, P. Nielsen, M. Wagner (2015)
Complete nitrification by Nitrospira bacteriaNature, 528
J. Boenigk, P. Stadler, Anneliese Wiedlroither, M. Hahn (2004)
Strain-Specific Differences in the Grazing Sensitivities of Closely Related Ultramicrobacteria Affiliated with the Polynucleobacter ClusterApplied and Environmental Microbiology, 70
(1972)
Ammonium and nitrite
B. Naafs, F. Monteiro, A. Pearson, M. Higgins, R. Pancost, A. Ridgwell (2019)
Fundamentally different global marine nitrogen cycling in response to severe ocean deoxygenationProceedings of the National Academy of Sciences, 116
A. Stamatakis (2014)
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogeniesBioinformatics, 30
Sebastian Lücker, M. Wagner, F. Maixner, É. Pelletier, Hanna Koch, B. Vacherie, T. Rattei, J. Damsté, E. Spieck, D. Paslier, H. Daims (2010)
A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteriaProceedings of the National Academy of Sciences, 107
B. Dongen, H. Talbot, Stefan Schouten, P. Pearson, R. Pancost (2006)
Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area, TanzaniaOrganic Geochemistry, 37
Shusuke Sato, F. Kudo, M. Rohmer, T. Eguchi (2019)
Characterization of Radical SAM Adenosylhopane Synthase, HpnH, which Catalyzes the 5'-Deoxyadenosyl Radical Addition to Diploptene in the Biosynthesis of C35 Bacteriohopanepolyols.Angewandte Chemie
Changqun Cao, G. Love, L. Hays, Wei Wang, S. Shen, R. Summons (2009)
Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction eventEarth and Planetary Science Letters, 281
S. Wakeham, C. Turich, F. Schubotz, A. Podlaska, Xiaona Li, R. Varela, Y. Astor, J. Sáenz, D. Rush, J. Damsté, R. Summons, M. Scranton, G. Taylor, K. Hinrichs (2012)
Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin, 63
Nunzia Picone, A. Pol, R. Mesman, Maartje Kessel, Geert Cremers, A. Gelder, T. Alen, M. Jetten, Sebastian Lücker, H. Camp (2020)
Ammonia oxidation at pH 2.5 by a new gammaproteobacterial ammonia-oxidizing bacteriumThe ISME Journal, 15
T. Mincer, M. Church, L. Taylor, C. Preston, D. Karl, E. Delong (2007)
Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre.Environmental microbiology, 9 5
Hopanoid lipids, bacteriohopanols and bacteriohopanepolyols, are membrane components exclusive to bacteria. Together with their diagenetic derivatives, they are commonly used as biomarkers for specific bacterial groups or biogeochemical processes in the geologic record. However, the sources of hopanoids to marine and freshwater environments remain inadequately constrained. Recent marker gene studies suggest a widespread potential for hopanoid biosynthesis in marine bacterioplankton, including nitrifying (i.e., ammonia‐ and nitrite‐oxidizing) bacteria. To explore their hopanoid biosynthetic capacities, we studied the distribution of hopanoid biosynthetic genes in the genomes of cultivated and uncultivated ammonia‐oxidizing (AOB), nitrite‐oxidizing (NOB), and complete ammonia‐oxidizing (comammox) bacteria, finding that biosynthesis of diverse hopanoids is common among seven of the nine presently cultivated clades of nitrifying bacteria. Hopanoid biosynthesis genes are also conserved among the diverse lineages of bacterial nitrifiers detected in environmental metagenomes. We selected seven representative NOB isolated from marine, freshwater, and engineered environments for phenotypic characterization. All tested NOB produced diverse types of hopanoids, with some NOB producing primarily diploptene and others producing primarily bacteriohopanepolyols. Relative and absolute abundances of hopanoids were distinct among the cultures and dependent on growth conditions, such as oxygen and nitrite limitation. Several novel nitrogen‐containing bacteriohopanepolyols were tentatively identified, of which the so called BHP‐743.6 was present in all NOB. Distinct carbon isotopic signatures of biomass, hopanoids, and fatty acids in four tested NOB suggest operation of the reverse tricarboxylic acid cycle in Nitrospira spp. and Nitrospina gracilis and of the Calvin–Benson–Bassham cycle for carbon fixation in Nitrobacter vulgaris and Nitrococcus mobilis. We suggest that the contribution of hopanoids by NOB to environmental samples could be estimated by their carbon isotopic compositions. The ubiquity of nitrifying bacteria in the ocean today and the antiquity of this metabolic process suggest the potential for significant contributions to the geologic record of hopanoids.
Geobiology – Wiley
Published: May 1, 2022
Keywords: bacteriohopanepolyols; biomarker; hopanoids; nitrifying bacteria; nitrite‐oxidizing bacteria
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.