Access the full text.
Sign up today, get DeepDyve free for 14 days.
O. Pokrovsky, J. Schott (2000)
Kinetics and mechanism of forsterite dissolution at 25°C and pH from 1 to 12Geochimica et Cosmochimica Acta, 64
W. Ullman, D. Kirchman, S. Welch, P. Vandevivere (1996)
Laboratory evidence for microbially mediated silicate mineral dissolution in natureChemical Geology, 132
T. Elmer, M. Nordberg (1958)
Solubility of Silica in Nitric Acid SolutionsJournal of the American Ceramic Society, 41
R. Aitken, P. Moody (1994)
The effect of valence and ionic strength on the measurement of pH buffer capacitySoil Research, 32
A. Templeton, H. Staudigel, B. Tebo (2005)
Diverse Mn(II)-Oxidizing Bacteria Isolated from Submarine Basalts at Loihi SeamountGeomicrobiology Journal, 22
K. Benzerara, N. Menguy, F. Guyot, C. Vanni, P. Gillet (2005)
TEM study of a silicate-carbonate-microbe interface prepared by focused ion beam millingGeochimica et Cosmochimica Acta, 69
S. Welch, W. Barker, J. Banfield (1999)
Microbial extracellular polysaccharides and plagioclase dissolutionGeochimica et Cosmochimica Acta, 63
(2019)
Geochemical SocietyElements
P. Dove, Nizhou Han, J. Yoreo (2005)
Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behaviorProceedings of the National Academy of Sciences of the United States of America, 102
E. Oelkers, J. Schott, J. Devidal (1994)
The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactionsGeochimica et Cosmochimica Acta, 58
J. Rimstidt, H. Barnes (1980)
The kinetics of silica-water reactionsGeochimica et Cosmochimica Acta, 44
W. Casey, B. Bunker (1990)
CHAPTER 10. LEACHING OF MINERAL AND GLASS SURFACES DURING DISSOLUTION
S. Kraemer (2004)
Iron oxide dissolution and solubility in the presence of siderophoresAquatic Sciences, 66
H. Helgeson, W. Murphy, P. Aagaard (1984)
Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants, effective surface area, and the hydrolysis of feldsparGeochimica et Cosmochimica Acta, 48
E. Hutchens, E. Hutchens, Eugenia Valsami-Jones, S. McEldowney, W. Gaze, J. McLean (2003)
The role of heterotrophic bacteria in feldspar dissolution – an experimental approachMineralogical Magazine, 67
S. Lontoh, J. Semrau (1998)
Methane and Trichloroethylene Degradation byMethylosinus trichosporium OB3b Expressing Particulate Methane MonooxygenaseApplied and Environmental Microbiology, 64
W. Barker, S. Welch, J. Banfield (1997)
Biogeochemical weathering of silicate mineralsReviews in Mineralogy & Geochemistry, 35
Elmer Elmer, Nordberg Nordberg (1958)
Solubility of silicon in nitric acidJournal of American Ceramics Society, 41
J. Mazer, J. Walther (1994)
Dissolution kinetics of silica glass as a function of pH between 40 and 85°CJournal of Non-crystalline Solids, 170
(1999)
Aquatic cycles at the earth’s surface
J. Zahn, A. DiSpirito (1996)
Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath)Journal of Bacteriology, 178
D. Choi, Corbin Zea, Young Do, J. Semrau, W. Antholine, M. Hargrove, N. Pohl, E. Boyd, G. Geesey, S. Hartsel, Peter Shafe, M. Mcellistrem, Clint Kisting, Damon Campbell, V. Rao, and Mora, A. DiSpirito (2006)
Spectral, kinetic, and thermodynamic properties of Cu(I) and Cu(II) binding by methanobactin from Methylosinus trichosporium OB3b.Biochemistry, 45 5
A. White, A. Blum, M. Schulz, T. Huntington, N. Peters, D. Stonestrom (2001)
Chemical weathering of the Panola Granite: Solute and regolith elemental fluxes and the weathering rate of biotite
J. Gautier, E. Oelkers, J. Schott (1994)
Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150°C and pH 9Geochimica et Cosmochimica Acta, 58
Kang Xia, Ahmed Mehadi, Robert Taylor, W. Bleam (1997)
X-Ray Absorption and Electron Paramagnetic Resonance Studies of Cu(II) Sorbed to Silica: Surface-Induced Precipitation at Low Surface CoveragesJournal of colloid and interface science, 185 1
W. Bourcier, D. Peiffer, K. Knauss, K. McKeegan, D. Smith (1989)
A Kinetic Model for Borosilicate Glass Dissolution Based on the Dissolution Affinity of a Surface Alteration LayerMRS Proceedings, 176
A. Lüttge, P. Conrad (2004)
Direct Observation of Microbial Inhibition of Calcite DissolutionApplied and Environmental Microbiology, 70
D. Choi, Ryan Kunz, E. Boyd, J. Semrau, W. Antholine, J.-I. Han, J. Zahn, J. Boyd, Arlene Mora, A. DiSpirito (2003)
The Membrane-Associated Methane Monooxygenase (pMMO) and pMMO-NADH:Quinone Oxidoreductase Complex from Methylococcus capsulatus BathJournal of Bacteriology, 185
D. Crerar, R. Hellmann, S. Wood (2002)
Water-rock interactions, ore deposits, and environmental geochemistry : a tribute to David A. Crerar
Aitken Aitken, Woody Woody (1994)
The effect of valence and ionic?strength on the measurement of pH buffer capacityAustralian Journal of Soil Research, 32
B. Zinder, G. Furrer, W. Stumm (1986)
The coordination chemistry of weathering: II. Dissolution of Fe(III) oxidesGeochimica et Cosmochimica Acta, 50
(2003)
An overview of biomineralization and the problem of the vital effect
Karine Flogeac, E. Guillon, M. Aplincourt (2004)
Surface complexation of copper(II) on soil particles: EPR and XAFS studies.Environmental science & technology, 38 11
M. Berlanga (2008)
Brock Biology of microorganisms 12th edn.International Microbiology, 11
D. Nies (1999)
Microbial heavy-metal resistanceApplied Microbiology and Biotechnology, 51
S. Sutheimer, P. Maurice, Qunhui Zhou (1999)
Dissolution of well and poorly crystallized kaolinites: Al speciation and effects of surface characteristicsAmerican Mineralogist, 84
(2002)
The Geochemist’s Workbench®. Release 4.0. A User’s Guide to Rxn, Act2, Tact, React, and Gtplot
P. Maurice, Melanie Vierkorn, L. Hersman, J. Fulghum, A. Ferryman (2001)
Enhancement of Kaolinite Dissolution by an Aerobic Pseudomonas mendocina BacteriumGeomicrobiology Journal, 18
H. Kim, N. Galeva, C. Larive, M. Alterman, D. Graham (2005)
Purification and physical-chemical properties of methanobactin: a chalkophore from Methylosinus trichosporium OB3b.Biochemistry, 44 13
K. Chander, P. Brookes, S. Harding (1995)
Microbial biomass dynamics following addition of metal-enriched sewage sludges to a sandy loamSoil Biology & Biochemistry, 27
D. Choi, Young Do, Corbin Zea, M. Mcellistrem, Sung-Woo Lee, J. Semrau, N. Pohl, Clint Kisting, Lori Scardino, S. Hartsel, E. Boyd, G. Geesey, T. Riedel, Peter Shafe, Kim Kranski, J. Tritsch, W. Antholine, A. DiSpirito (2006)
Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b.Journal of inorganic biochemistry, 100 12
Awwa, Wef (1999)
Standard Methods for the examination of water and wastewater
Li Li, Vali Vali, Sears Sears, Yang Yang, Deng Deng, Zhang Zhang (2004)
Iron reduction and alteration of nontronite NAu?2 by a sulfate?reducing bacteriumGeochimica et Cosmochimica Acta, 68
R. Swarup, S. Mishra, V. Jauhari (1992)
Environmental Science and Technology
S. Welch, W. Ullman (1993)
The effect of organic acids on plagioclase dissolution rates and stoichiometryGeochimica et Cosmochimica Acta, 57
P. Bennett, J. Rogers, Wan-joo Choi, F. Hiebert (2001)
Silicates, Silicate Weathering, and Microbial EcologyGeomicrobiology Journal, 18
(1986)
The dissolution rate of forsteritic olivine from Hawaiian beach sand
B. Kalinowski, L. Liermann, S. Brantley, A. Barnes, C. Pantano (2000)
X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblendeGeochimica et Cosmochimica Acta, 64
J. Rogers, P. Bennett (2004)
Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicatesChemical Geology, 203
R. Berner (1995)
Chapter 13. CHEMICAL WEATHERING AND ITS EFFECT ON ATMOSPHERIC CO2 AND CLIMATE
S. Welch, P. Vandevivere (1994)
Effect of microbial and other naturally occurring polymers on mineral dissolutionGeomicrobiology Journal, 12
J. Banfield, W. Barker, Sue Welch, A. Taunton (1999)
Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere.Proceedings of the National Academy of Sciences of the United States of America, 96 7
P. Dove (1990)
Reply to Comment on “Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor”Geochimica et Cosmochimica Acta, 56
P. Dove (1999)
The dissolution kinetics of quartz in aqueous mixed cation solutionsGeochimica et Cosmochimica Acta, 63
(1987)
The dissolution of oxides and aluminum silicates; examples of surface coordination-controlled kinetics
R. Rajapaksha, R. Rajapaksha, M. Tobor-Kapłon, E. Bååth (2004)
Metal Toxicity Affects Fungal and Bacterial Activities in Soil DifferentlyApplied and Environmental Microbiology, 70
S. Brantley (2003)
Reaction Kinetics of Primary Rock-forming Minerals under Ambient ConditionsTreatise on Geochemistry, 5
M. Kawano, K. Tomita (2001)
TEM-EDX study of weathered layers on the surface of volcanic glass, bytownite, and hypersthene in volcanic ash from Sakurajima volcano, JapanAmerican Mineralogist, 86
Torbjörn Karlsson, P. Persson, U. Skyllberg (2006)
Complexation of copper(ll) in organic soils and in dissolved organic matter--EXAFS evidence for chelate ring structures.Environmental science & technology, 40 8
W. Stumm (1992)
Chemistry of the solid-water interface
Dove Dove, Crerar Crerar (1990)
Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactorGeochimica et Cosmochimica Acta, 54
P. Aagaard, H. Helgeson (1982)
Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, Theoretical considerationsAmerican Journal of Science, 282
P. Dove, Stephen Elston (1992)
Dissolution kinetics of quartz in sodium chloride solutions: Analysis of existing data and a rate model for 25°CGeochimica et Cosmochimica Acta, 56
S. Welch, A. Taunton, J. Banfield (2002)
Effect of Microorganisms and Microbial Metabolites on Apatite DissolutionGeomicrobiology Journal, 19
D. Choi, W. Antholine, Young Do, J. Semrau, Clint Kisting, Ryan Kunz, Damon Campbell, V. Rao, S. Hartsel, A. DiSpirito (2005)
Effect of methanobactin on the activity and electron paramagnetic resonance spectra of the membrane-associated methane monooxygenase in Methylococcus capsulatus Bath.Microbiology, 151 Pt 10
S. Ray, S. Daube, R. Naaman (2005)
On the capturing of low-energy electrons by DNA.Proceedings of the National Academy of Sciences of the United States of America, 102 1
J. Morton, K. Hayes, J. Semrau (2000)
Bioavailability of Chelated and Soil-Adsorbed Copper to Methylosinus trichosporium OB3bEnvironmental Science & Technology, 34
R. Parkes (1998)
Geomicrobiology: Interactions Between Microbes and MineralsMineralogical Magazine, 62
H. Shacklette, J. Boerngen (1984)
Element concentrations in soils and other surficial materials of the conterminous United States
J. Icenhower, P. Dove (2000)
The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strengthGeochimica et Cosmochimica Acta, 64
S. Welch, S. Welch, W. Ullman (1999)
The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 and 35 CGeochimica et Cosmochimica Acta, 63
(2002)
Organic ligands and feldspar dissolution
P. Dove, C. Nix (1997)
The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartzGeochimica et Cosmochimica Acta, 61
W. Barker, S. Welch, J. Banfield (1997)
Chapter 12. BIOGEOCHEMICAL WEATHERING OF SILICATE MINERALS
P. Brady, R. Dorn, A. Brazel, James Clark, Richard Moore, Tiffany Glidewell (1999)
Direct measurement of the combined effects of lichen, rainfall, and temperature onsilicate weathering ☆Geochimica et Cosmochimica Acta, 63
(1981)
Rate laws of geochemical reactions
W. Stumm, R. Wollast (1990)
Coordination chemistry of weathering: Kinetics of the surface-controlled dissolution of oxide mineralsReviews of Geophysics, 28
K. Benzerara, M. Barakat, N. Menguy, F. Guyot, G. Luca, C. Audrain, T. Heulin (2004)
Experimental Colonization and Alteration of Orthopyroxene by the Pleomorphic Bacteria Ramlibacter tataouinensisGeomicrobiology Journal, 21
E. Oelkers, S. Gíslason (2001)
The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11Geochimica et Cosmochimica Acta, 65
R. Blake, L. Walter (1999)
Kinetics of feldspar and quartz dissolution at 70–80°C and near-neutral pH: effects of organic acids and NaClGeochimica et Cosmochimica Acta, 63
R. Wollast, L. Chou (1992)
Surface reactions during the early stages of weathering of albiteGeochimica et Cosmochimica Acta, 56
A. Seidel, M. Löbbus, W. Vogelsberger, J. Sonnefeld (1997)
The kinetics of dissolution of silica 'Monospher' into water at different concentrations of background electrolyteSolid State Ionics
R. Berner (1995)
Chemical weathering and its effect on atmospheric CO 2 and climateReviews in Mineralogy & Geochemistry, 31
J. Strickland, T. Parsons (1968)
A practical handbook of seawater analysis
L. Liermann, Amy Barnes, B. Kalinowski, Xiangyang Zhou, S. Brantley (2000)
Microenvironments of pH in biofilms grown on dissolving silicate surfacesChemical Geology, 171
M. Karlsson, C. Craven, P. Dove, W. Casey (2001)
Surface Charge Concentrations on Silica in Different 1.0 M Metal-Chloride Background Electrolytes and Implications for Dissolution RatesAquatic Geochemistry, 7
H. Kim, D. Graham, A. DiSpirito, M. Alterman, N. Galeva, C. Larive, D. Asunskis, P. Sherwood (2004)
Methanobactin, a Copper-Acquisition Compound from Methane-Oxidizing BacteriaScience, 305
C. Santelli, S. Welch, H. Westrich, J. Banfield (2001)
The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolutionChemical Geology, 180
J. Morton, K. Hayes, J. Semrau (2000)
Effect of Copper Speciation on Whole-Cell Soluble Methane Monooxygenase Activity in Methylosinus trichosporium OB3bApplied and Environmental Microbiology, 66
A. Greenberg, R. Trussell, L. Clesceri (1988)
Standard methods for the examination of water and wastewater : supplement to the sixteenth edition
Murrell Murrell, Gilbert Gilbert, McDonald McDonald (2000)
Molecular biology and regulation of methane monooxygenaseArchives in Microbiology, 173
Philippe Vandevivere, Susan Welch, W. Ullman, D. Kirchman (1994)
Enhanced dissolution of silicate minerals by bacteria at near-neutral pHMicrobial Ecology, 27
Casey Casey, Bunker Bunker (1990)
Leaching of mineral and glass surfaces during dissolutionMineral-Water Interface Geochemistry (Reviews in Mineralogy), 23
J. Kostka, E. Haefele, and Viehweger, J. Stucki (1999)
Respiration and Dissolution of Iron(III)-Containing Clay Minerals by BacteriaEnvironmental Science & Technology, 33
L. Liermann, B. Kalinowski, S. Brantley, J. Ferry (2000)
Role of bacterial siderophores in dissolution of hornblendeGeochimica et Cosmochimica Acta, 64
J. Rogers, Philip Bennett, Wan-joo Choi (1998)
Feldspars as a source of nutrients for microorganismsAmerican Mineralogist, 83
Banfield Banfield, Barker Barker, Welch Welch, Taunton Taunton (1999)
Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphereProceedings of the National Academy of Sciences of the USA, 96
M. Madigan, J. Martinko, J. Parker (1996)
Brock Biology of Microorganisms
G. Furrer, W. Stumm (1986)
The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al2O3 and BeOGeochimica et Cosmochimica Acta, 50
(1995)
Copper in Water and Aquatic Environments
H. Vali, Yibo Li, S. Sears, Joseph Yang, B. Deng, Cuilin Zhang (2004)
Alteration of Nontronite NAU-2 by a Sulfate-Reducing Bacterium
E. Oelkers, J. Schott (1995)
Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysisGeochimica et Cosmochimica Acta, 59
A. White, A. Blum (1995)
Effects of climate on chemical_ weathering in watershedsGeochimica et Cosmochimica Acta, 59
P. Maurice, Y. Lee, L. Hersman (2000)
Dissolution of Al-substituted goethites by an aerobic Pseudomonas mendocina var. bacteriaGeochimica et Cosmochimica Acta, 64
L. Hersman, Allison Huang, P. Maurice, J. Forsythe (2000)
Siderophore Production and Iron Reduction by Pseudomonas mendocina in Response to Iron DeprivationGeomicrobiology Journal, 17
S. Brantley, L. Liermann, M. Bau, S. Wu (2001)
Uptake of Trace Metals and Rare Earth Elements from Hornblende by a Soil BacteriumGeomicrobiology Journal, 18
A. Lasaga, J. Soler, J. Ganor, T. Burch, K. Nagy (1994)
Chemical weathering rate laws and global geochemical cyclesGeochimica et Cosmochimica Acta, 58
R. Hanson, Thomas Hanson (1996)
Methanotrophic bacteria.Microbiological reviews, 60 2
Benzerara Benzerara, Menguy Menguy, Guyot Guyot, De Luca De Luca, Heulin Heulin, Audrain Audrain (2004)
Experimental colonization and weathering of orthopyroxenes by the pleomorphic bacteria Ramlibacter tatahouinensisGeomicrobiology Journal, 21
R. Shannon (1976)
Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenidesActa Crystallographica Section A, 32
S. Kuester (1953)
The Nature and Properties of SoilsSoil Science Society of America Journal
B. Holmén, W. Casey (1996)
Hydroxamate ligands, surface chemistry, and the mechanism of ligand-promoted dissolution of goethite [α-FeOOH(s)]Geochimica et Cosmochimica Acta, 60
ABSTRACT Mineral weathering plays an important role in the global cycling of carbon and metals and there is an increasing realization that subsurface microbial activity may be a key factor controlling specific biogeochemical reactions and their rates. Methanobactin (mb) is an extracellular copper‐binding compound excreted by methanotrophs to acquire copper for the regulation of methane oxidation. Bioavailable Cu regulates the expression and activity of pMMO vs. sMMO (particulate vs. soluble methane monooxygenase, respectively), key enzymes responsible for bacterial methane oxidation. In this study, we investigate the effect of mb on the dissolution of Cu‐substituted borosilicate glass at low temperature and near neutral pH conditions, using batch dissolution experiments. Methanobactin promotes the dissolution of Cu‐substituted glasses at rates faster than control experiments. Glasses with lower concentrations of copper (80 p.p.m.) or no copper are dissolved more rapidly by mb than those with more abundant copper (800 p.p.m.). Within the first 2 h of reaction, mb sorption onto glass surfaces limits mass transfer of Cu into solution, and at higher concentrations (100 µmol) of the ligand, inhibits dissolution rates of all glass formulations. These results suggest that both the concentration of mb in solution and the solid phase Cu concentration impact silicate weathering rates and related cycling of carbon in near‐surface geological settings.
Geobiology – Wiley
Published: Sep 1, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.