Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Sheeren, M. Fauvel, V. Josipovíc, M. Lopes, C. Planque, J. Willm (2016)
Tree species classification in temperate forests using Formosat?2 satellite image time series, 8
Y. Ryu, G. Lee, S. Jeon, Y. Song, H. Kimm (2014)
Monitoring multi?layer canopy spring phenology of temperate deciduous and evergreen forests using low?cost spectral sensors, 149
T.F. Keenan, B. Darby, E. Felts, O. Sonnentag, M.A. Friedl, K. Hufkens (2014)
Tracking forest phenology and seasonal physiology using digital repeat photography: A critical assessment, 24
S. Marconi, S.J. Graves, B.G. Weinstein, S. Bohlman, E.P. White (2019)
Rethinking the fundamental unit of ecological remote sensing: Estimating individual level plant traits at scale
H. Aasen, E. Honkavaara, A. Lucieer, P.J. Zarco‐Tejada (2018)
Quantitative remote sensing at ultra?high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows, 10
A.K. Birky (2001)
NDVI and a simple model of deciduous forest seasonal dynamics, 143
X. Yao, N. Wang, Y. Liu, T. Cheng, Y. Tian, Q. Chen (2017)
Estimation of wheat LAI at middle to high levels using unmanned aerial vehicle narrowband multispectral imagery, 9
T.M. Kuster, M. Dobbertin, M.S. Günthardt‐Goerg, M. Schaub, M. Arend (2014)
A phenological timetable of oak growth under experimental drought and air warming, 9
X. Chen, D. Wang, J. Chen, C. Wang, M. Shen (2018)
The mixed pixel effect in land surface phenology: A simulation study, 211
W. Iersel, M. Straatsma, E. Addink, H. Middelkoop (2018)
Monitoring height and greenness of non?woody floodplain vegetation with UAV time series, 141
D. Aragones, V.F. Rodriguez‐Galiano, J.A. Caparros‐Santiago, R.M. Navarro‐Cerrillo (2019)
Could land surface phenology be used to discriminate Mediterranean pine species?, 78
A. Burt, M. Disney, K. Calders (2019)
Extracting individual trees from lidar point clouds using treeseg, 10
L. Wallace, A. Lucieer, Z. Malenovský, D. Turner, P. Vopěnka (2016)
Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds, 7
H.D. Adams, A.D. Collins, S.P. Briggs, M. Vennetier, L.T. Dickman, S.A. Sevanto (2015)
Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees, 21
D. Basler, C. Körner (2012)
Photoperiod sensitivity of bud burst in 14 temperate forest tree species, 165
Y. Vitasse, C.C. Bresson, A. Kremer, R. Michalet, S. Delzon (2010)
Quantifying phenological plasticity to temperature in two temperate tree species, 24
A. Revill, A. Florence, A. MacArthur, S. Hoad, R. Rees, M. Williams (2019)
The value of sentinel?2 spectral bands for the assessment of winter wheat growth and development, 11
D.K. Bolton, J.M. Gray, E.K. Melaas, M. Moon, L. Eklundh, M.A. Friedl (2020)
Continental?scale land surface phenology from harmonized Landsat 8 and Sentinel?2 imagery, 240
A.D. Leslie, M. Mencuccini, M.P. Perks (2017)
A resource capture efficiency index to compare differences in early growth of four tree species in northern England, 10
M. Mõttus, T.L.H. Takala, P. Stenberg, Y. Knyazikhin, B. Yang, T. Nilson (2015)
Diffuse sky radiation influences the relationship between canopy PRI and shadow fraction, 105
X. Zhu, D. Liu (2015)
Improving forest aboveground biomass estimation using seasonal Landsat NDVI time?series, 102
Q. Han, G. Luo, C. Li (2013)
Remote sensing?based quantification of spatial variation in canopy phenology of four dominant tree species in Europe, 7
F. Liu, X. Wang, C. Wang (2019)
Measuring vegetation phenology with near?surface remote sensing in a temperate deciduous forest: Effects of sensor type and deployment, 11
S.T. Klosterman, K. Hufkens, J.M. Gray, E. Melaas, O. Sonnentag, I. Lavine (2014)
Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery, 11
S. Klosterman, E. Melaas, J. Wang, A. Martinez, S. Frederick, J. O’Keefe (2018)
Fine?scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography, 248
T.L.H. Takala, M. Mõttus (2016)
Spatial variation of canopy PRI with shadow fraction caused by leaf?level irradiation conditions, 182
H. Zhang, E. Aldana‐Jague, F. Clapuyt, F. Wilken, V. Vanacker, K. Van Oost (2019)
Evaluating the potential of post?processing kinematic (PPK) georeferencing for UAV?based structure?from?motion (SfM) photogrammetry and surface change detection, 7
C. Prabakaran, C.P. Singh, S. Panigrahy, J.S. Parihar (2013)
Retrieval of forest phenological parameters from remote sensing?based NDVI time?series data, 105
A. Pennec, V.R. Gond, D. Sabatier (2011)
Tropical forest phenology in French Guiana from MODIS time series, 2
J. Delegido, J. Verrelst, L. Alonso, J. Moreno (2011)
Evaluation of sentinel?2 red?edge bands for empirical estimation of green LAI and chlorophyll content, 11
J. Suomalainen, T. Hakala, R.A. Oliveira, L. Markelin, N. Viljanen, R. Näsi (2018)
A novel tilt correction technique for irradiance sensors and spectrometers on?board unmanned aerial vehicles, 10
A. Huete, K. Didan, T. Miura, E. Rodriguez, X. Gao, L. Ferreira (2002)
Overview of the radiometric and biophysical performance of the MODIS vegetation indices, 83
T. Duan, S.C. Chapman, Y. Guo, B. Zheng (2017)
Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle, 210
K. Kowalski, C. Senf, P. Hostert, D. Pflugmacher (2020)
Characterizing spring phenology of temperate broadleaf forests using Landsat and Sentinel?2 time series, 92
D. Scheffler, A. Hollstein, H. Diedrich, K. Segl, P. Hostert (2017)
AROSICS: An automated and robust open?source image co?registration software for multi?sensor satellite data, 9
Y. Liu, M.J. Hill, X. Zhang, Z. Wang, A.D. Richardson, K. Hufkens (2017)
Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales, 237–238
J.A. Gamon, Y. Cheng, H. Claudio, L. MacKinney, D.A. Sims (2006)
A mobile tram system for systematic sampling of ecosystem optical properties, 103
L. Qiu, L. Jing, B. Hu, H. Li, Y. Tang (2020)
A new individual tree crown delineation method for high resolution multispectral imagery, 12
K. White, J. Pontius, P. Schaberg (2014)
Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty, 148
J. Pastor‐Guzman, J. Dash, P.M. Atkinson (2018)
Remote sensing of mangrove forest phenology and its environmental drivers, 205
A. Damm, L. Guanter, W. Verhoef, D. Schläpfer, S. Garbari, M.E. Schaepman (2015)
Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data, 156
D.E. Ahl, S.T. Gower, S.N. Burrows, N.V. Shabanov, R.B. Myneni, Y. Knyazikhin (2006)
Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS, 104
L.I. Duncanson, B.D. Cook, G.C. Hurtt, R.O. Dubayah (2014)
An efficient, multi?layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems, 154
E.K. Melaas, M.A. Friedl, Z. Zhu (2013)
Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data, 132
P. Marques, L. Pádua, T. Adão, J. Hruška, E. Peres, A. Sousa (2019)
UAV?based automatic detection and monitoring of chestnut trees, 11
F.H. Wagner, M.P. Ferreira, A. Sanchez, M.C.M. Hirye, M. Zortea, E. Gloor (2018)
Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images, 145
F.H. Holman, A.B. Riche, M. Castle, M.J. Wooster, M.J. Hawkesford (2019)
Radiometric calibration of ?commercial off the shelf? cameras for UAV?based high?resolution temporal crop phenotyping of reflectance and NDVI, 11
T.Y. Lee, Y.J. Kaufman (1986)
Non?Lambertian effects on surface reflectance and vegetation index, 24
C. Neumann, R. Behling, A. Schindhelm, S. Itzerott, G. Weiss, M. Wichmann (2020)
The colors of heath flowering ? quantifying spatial patterns of phenology in Calluna life?cycle phases using high?resolution drone imagery, 6
K. Soudani, G. Hmimina, N. Delpierre, J.‐Y. Pontailler, M. Aubinet, D. Bonal (2012)
Ground?based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes, 123
M. Immitzer, M. Neuwirth, S. Böck, H. Brenner, F. Vuolo, C. Atzberger (2019)
Optimal input features for tree species classification in Central Europe based on multi?temporal Sentinel?2 data, 11
H. Menouar, I. Guvenc, K. Akkaya, A.S. Uluagac, A. Kadri, A. Tuncer (2017)
UAV?enabled intelligent transportation systems for the smart city: Applications and challenges, 55
A. Cutini, A. Varallo (2006)
Estimation of foliage characteristics of isolated trees with the Plant Canopy Analyzer LAI?2000, 1
G. Forlani, E. Dall’Asta, F. Diotri, U.M. di Cella, R. Roncella, M. Santise (2018)
Quality assessment of DSMs produced from UAV flights georeferenced with on?board RTK positioning, 10
Z. Xu, X. Shen, L. Cao, N.C. Coops, T.R.H. Goodbody, T. Zhong (2020)
Tree species classification using UAS?based digital aerial photogrammetry point clouds and multispectral imageries in subtropical natural forests, 92
A. Matese, P. Toscano, S.F. Di Gennaro, L. Genesio, F.P. Vaccari, J. Primicerio (2015)
Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture, 7
L.A. Brown, J. Dash, B.O. Ogutu, A.D. Richardson (2017)
On the relationship between continuous measures of canopy greenness derived using near?surface remote sensing and satellite?derived vegetation products, 247
T.B. Brown, K.R. Hultine, H. Steltzer, E.G. Denny, M.W. Denslow, J. Granados (2016)
Using phenocams to monitor our changing earth: Toward a global phenocam network, 14
J.J. Assmann, J.T. Kerby, A.M. Cunliffe, I.H. Myers‐smith (2019)
Vegetation monitoring using multispectral sensors ? best practices and lessons learned from high latitudes, 7
D.S. Boyd, S. Almond, J. Dash, P.J. Curran, R.A. Hill (2011)
Phenology of vegetation in southern england from envisat meris terrestrial chlorophyll index (MTCI) data, 32
Q. Wang, S. Adiku, J. Tenhunen, A. Granier (2005)
On the relationship of NDVI with leaf area index in a deciduous forest site, 94
S. Piao, Q. Liu, A. Chen, I.A. Janssens, Y. Fu, J. Dai (2019)
Plant phenology and global climate change: Current progresses and challenges, 25
N. Delbart, L. Kergoat, T. Le Toan, J. Lhermitte, G. Picard (2005)
Determination of phenological dates in boreal regions using normalized difference water index, 97
D. Fawcett, K. Anderson (2019)
Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI
J.Y. Park, H.C. Muller‐Landau, J.W. Lichstein, S.W. Rifai, J.P. Dandois, S.A. Bohlman (2019)
Quantifying leaf phenology of individual trees and species in a tropical forest using unmanned aerial vehicle (UAV) images, 11
G. Bowman, M. Tarayre, A. Atlan (2008)
How is the invasive gorse Ulex europaeus pollinated during winter? A lesson from its native range, 197
J.J. Walker, K.M. De Beurs, R.H. Wynne, F. Gao (2012)
Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology, 117
E.E. Cleland, I. Chuine, A. Menzel, H.A. Mooney, M.D. Schwartz (2007)
Shifting plant phenology in response to global change, 22
C.Y.S. Wong, P. D’Odorico, Y. Bhathena, M.A. Arain, I. Ensminger (2019)
Carotenoid based vegetation indices for accurate monitoring of the phenology of photosynthesis at the leaf?scale in deciduous and evergreen trees, 233
S.R. Sandmeier, K.I. Itten (1999)
A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data, 37
M. Aboutalebi, A.F. Torres‐Rua, W.P. Kustas, H. Nieto, C. Coopmans, M. McKee (2019)
Assessment of different methods for shadow detection in high?resolution optical imagery and evaluation of shadow impact on calculation of NDVI, and evapotranspiration, 37
L. Deng, Z. Mao, X. Li, Z. Hu, F. Duan, Y. Yan (2018)
UAV?based multispectral remote sensing for precision agriculture: A comparison between different cameras, 146
K.V. Mijnsbrugge, A. Janssens (2019)
Differentiation and non?linear responses in temporal phenotypic plasticity of seasonal phenophases in a common garden of Crataegus monogyna Jacq, 10
Y.‐H. Tu, S. Phinn, K. Johansen, A. Robson (2018)
Assessing radiometric correction approaches for multi?spectral UAS imagery for horticultural applications, 10
X. Zhang, M.A. Friedl, C.B. Schaaf, A.H. Strahler, J.C.F. Hodges, F. Gao (2003)
Monitoring vegetation phenology using MODIS, 84
K. Hufkens, M. Friedl, O. Sonnentag, B.H. Braswell, T. Milliman, A.D. Richardson (2012)
Linking near?surface and satellite remote sensing measurements of deciduous broadleaf forest phenology, 117
M.R. James, S. Robson (2014)
Mitigating systematic error in topographic models derived from UAV and ground?based image networks, 39
E. Guirado, J. Blanco‐Sacristán, J.P. Rigol‐Sánchez, D. Alcaraz‐Segura, J. Cabello (2019)
A multi?temporal object?based image analysis to detect long?lived shrub cover changes in drylands, 11
C.J. Tucker (1979)
Red and photographic infrared linear combinations for monitoring vegetation, 8
J.P. Duffy, A.M. Cunliffe, L. DeBell, C. Sandbrook, S.A. Wich, J.D. Shutler (2017)
Location, location, location: considerations when using lightweight drones in challenging environments, 7–19
P. D’Odorico, A. Besik, C.Y.S. Wong, N. Isabel, I. Ensminger (2020)
High?throughput drone?based remote sensing reliably tracks phenology in thousands of conifer seedlings, 226
E.F. Berra, R. Gaulton, S. Barr (2019)
Assessing spring phenology of a temperate woodland: a multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations, 223
T. Hakala, E. Honkavaara, H. Saari, J. Mäkynen, J. Kaivosoja, L. Pesonen (2013)
Spectral Imaging From Uavs Under Varying Illumination Conditions, XL‐1/W2
M. Persson, E. Lindberg, H. Reese (2018)
Tree species classification with multi?temporal Sentinel?2 data, 10
C.A. Polgar, R.B. Primack (2011)
Leaf?out phenology of woody plants: From trees to ecosystems, 926–941
B. Galkin, J. Kibilda, L.A. DaSilva (2019)
UAVs as Mobile Infrastructure: Addressing Battery Lifetime, 57
Y. Byun, J. Song, W. Song, B. Kang (2016)
Conceptual study of a smart docking system for VTOL?UAV, 29
E.F. Berra, R. Gaulton, S. Barr (2017)
Commercial Off?the?shelf digital cameras on unmanned aerial vehicles for multitemporal monitoring of vegetation reflectance and NDVI, 55
T. Poblete, S. Ortega‐Farías, D. Ryu (2018)
Automatic coregistration algorithm to remove canopy shaded pixels in UAV?borne thermal images to improve the estimation of crop water stress index of a drip?irrigated cabernet sauvignon vineyard, 18
Remote Sensing in Ecology and Conservation – Wiley
Published: Jun 1, 2021
Keywords: ; ; ; ; ; ; ;
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.