Access the full text.
Sign up today, get DeepDyve free for 14 days.
T. Lacher, Ana Davidson, T. Fleming, Emma Gómez-Ruiz, G. McCracken, N. Owen‐Smith, C. Peres, S. Wall (2019)
The functional roles of mammals in ecosystemsJournal of Mammalogy
Mael Moreni, J. Théau, S. Foucher (2021)
Train Fast While Reducing False Positives: Improving Animal Classification Performance Using Convolutional Neural NetworksGeomatics
(2015)
WIMUAS: developing a tool
P. Soviany, R.T. Ionescu (2018)
Proceedings of the 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
V. Escott-Price, C. Bellenguez, Li-San Wang, S. Choi, D. Harold, L. Jones, P. Holmans, A. Gerrish, Alexey Vedernikov, A. Richards, A. Destefano, J. Lambert, C. Ibrahim-Verbaas, A. Naj, R. Sims, G. Jun, J. Bis, G. Beecham, B. Grenier‐Boley, G. Russo, T. Thornton-Wells, N. Denning, A. Smith, V. Chouraki, C. Thomas, M. Ikram, D. Zélénika, B. Vardarajan, Y. Kamatani, Chiao-Feng Lin, H. Schmidt, B. Kunkle, M. Dunstan, M. Vronskaya, Andrew Johnson, A. Ruiz, M. Bihoreau, C. Reitz, F. Pasquier, P. Hollingworth, O. Hanon, A. Fitzpatrick, J. Buxbaum, D. Campion, P. Crane, C. Baldwin, T. Becker, V. Gudnason, C. Cruchaga, D. Craig, N. Amin, C. Berr, O. Lopez, P. Jager, V. Deramecourt, J. Johnston, D. Evans, S. Lovestone, L. Letenneur, I. Hernández, D. Rubinsztein, G. Eiriksdottir, K. Sleegers, A. Goate, N. Fievet, M. Huentelman, M. Gill, K. Brown, M. Kamboh, L. Keller, P. Barberger‐Gateau, B. McGuinness, E. Larson, A. Myers, C. Dufouil, S. Todd, D. Wallon, S. Love, E. Rogaeva, J. Gallacher, P. George-Hyslop, J. Clarimón, A. Lleó, A. Bayer, D. Tsuang, Lei Yu, M. Tsolaki, P. Bossù, G. Spalletta, P. Proitsi, J. Collinge, S. Sorbi, Florentino Garcia, Nick Fox, J. Hardy, M. Naranjo, P. Bosco, R. Clarke, C. Brayne, D. Galimberti, E. Scarpini, U. Bonuccelli, M. Mancuso, G. Siciliano, S. Moebus, P. Mecocci, M. Zompo, W. Maier, H. Hampel, A. Pilotto, A. Frank‐García, F. Panza, V. Solfrizzi, P. Caffarra, B. Nacmias, W. Perry, M. Mayhaus, L. Lannfelt, H. Hakonarson, S. Pichler, M. Carrasquillo, M. Ingelsson, D. Beekly, V. Álvarez, F. Zou, O. Valladares, S. Younkin, E. Coto, K. Hamilton-Nelson, W. Gu, C. Razquín, P. Pástor, I. Mateo, M. Owen, K. Faber, P. Jonsson, O. Combarros, M. O’Donovan, L. Cantwell, H. Soininen, D. Blacker, S. Mead, T. Mosley, D. Bennett, T. Harris, L. Fratiglioni, C. Holmes, R. Bruijn, P. Passmore, T. Montine, K. Bettens, J. Rotter, A. Brice, K. Morgan, T. Foroud, W. Kukull, D. Hannequin, J. Powell, M. Nalls, K. Ritchie, K. Lunetta, J. Kauwe, E. Boerwinkle, M. Riemenschneider, M. Boada, M. Hiltunen, E. Martin, R. Schmidt, D. Rujescu, J. Dartigues, R. Mayeux, C. Tzourio, A. Hofman, M. Nöthen, C. Graff, B. Psaty, J. Haines, M. Lathrop, M. Pericak-Vance, L. Launer, C. Broeckhoven, L. Farrer, C. Duijn, A. Ramírez, S. Seshadri, G. Schellenberg, P. Amouyel, Julie Williams (2014)
Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's DiseasePLoS ONE, 9
Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun (2015)
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal NetworksIEEE Transactions on Pattern Analysis and Machine Intelligence, 39
Xiaoxiang Zhu, D. Tuia, Lichao Mou, Gui-Song Xia, Liangpei Zhang, Feng Xu, F. Fraundorfer (2017)
Deep learning in remote sensing: a reviewArXiv, abs/1710.03959
Jinbang Peng, Dongliang Wang, X. Liao, Q. Shao, Zhipeng Sun, Huanyin Yue, Huping Ye (2020)
Wild animal survey using UAS imagery and deep learning: modified Faster R-CNN for kiang detection in Tibetan PlateauIsprs Journal of Photogrammetry and Remote Sensing, 169
(2019)
2019b) Data from: the aerial elephant
G. Ceballos, P. Ehrlich, A. Barnosky, Andrés García, R. Pringle, T. Palmer (2015)
Accelerated modern human–induced species losses: Entering the sixth mass extinctionScience Advances, 1
(2019)
2019a) The aerial elephant dataset
Julie Linchant, Simon Lhoest, Samuel Quevauvillers, P. Lejeune, C. Vermeulen, Jean Ngabinzeke, Basile Belanganayi, W. Delvingt, Philippe Bouché (2018)
UAS imagery reveals new survey opportunities for counting hipposPLoS ONE, 13
F. Isbell, Andrew Gonzalez, M. Loreau, Jane Cowles, S. Díaz, A. Hector, G. Mace, D. Wardle, M. O’Connor, J. Duffy, Lindsay Turnbull, Patrick Thompson, A. Larigauderie (2017)
Linking the influence and dependence of people on biodiversity across scalesNature, 546
Margarita Ny, Roel Stolper, L. Essen, J. Negro, Tyrell Sassen, Hussein Suleman (2014)
Remotely Piloted Aircraft Systems as a Rhinoceros Anti-Poaching Tool in AfricaPLoS ONE, 9
J. Eikelboom, J. Wind, Eline Ven, Lekishon Kenana, B. Schroder, H. Knegt, F. Langevelde, H. Prins (2019)
Improving the precision and accuracy of animal population estimates with aerial image object detectionMethods in Ecology and Evolution, 10
Dominique Chabot, D. Bird (2015)
Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in?1, 3
C. Vermeulen, P. Lejeune, Jonathan Lisein, Prosper Sawadogo, Philippe Bouché (2013)
Unmanned Aerial Survey of ElephantsPLoS ONE, 8
(2020)
Living planet report
Julie Linchant, Simon Lhoest, Samuel Quevauvillers, Jean Semeki, P. Lejeune, C. Vermeulen (2015)
WIMUAS: DEVELOPING A TOOL TO REVIEW WILDLIFE DATA FROM VARIOUS UAS FLIGHT PLANSISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
P. Mayaux, E. Bartholomé, S. Fritz, A. Belward (2004)
A new land‐cover map of Africa for the year 2000Journal of Biogeography, 31
W. Thuiller, O. Broennimann, G. Hughes, J. Alkemade, G. Midgley, F. Corsi (2006)
Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptionsGlobal Change Biology, 12
M. Everingham, L. Gool, Christopher Williams, J. Winn, A. Zisserman (2010)
The Pascal Visual Object Classes (VOC) ChallengeInternational Journal of Computer Vision, 88
Kaiming He, X. Zhang, Shaoqing Ren, Jian Sun (2015)
Deep Residual Learning for Image Recognition2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
G. Sangster, B. King, P. Verbelen, Colin Trainor (2013)
A New Owl Species of the Genus Otus (Aves: Strigidae) from Lombok, IndonesiaPLoS ONE, 8
B. Kellenberger, Diego Marcos, D. Tuia (2018)
Detecting Mammals in UAV Images: Best Practices to address a substantially Imbalanced Dataset with Deep LearningArXiv, abs/1806.11368
岡本 正人, 戸塚 千晴, 田辺 安忠, 赤坂 剛史 (2003)
Small unmanned aircraft
Ian Craigie, J. Baillie, A. Balmford, C. Carbone, B. Collen, R. Green, J. Hutton (2010)
Large mammal population declines in Africa’s protected areasBiological Conservation, 143
S. Beery, Y. Liu, D. Morris, J. Piavis, A. Kapoor, N. Joshi (2020)
Proceedings of the IEEE Winter Conference on Applications of Computer Vision
Sara Beery, Yang Liu, Dan Morris, Jim Piavis, Ashish Kapoor, M. Meister, P. Perona (2019)
Synthetic Examples Improve Generalization for Rare Classes2020 IEEE Winter Conference on Applications of Computer Vision (WACV)
Y. Thomas, D. Scott, Y. Kristariyanto, J. Rinehart, K. Clark, P. Cohen, Thimo Kurz (2018)
The NEDD8 E3 ligase DCNL5 is phosphorylated by IKK alpha during Toll-like receptor activationPLoS ONE, 13
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollár (2017)
Focal Loss for Dense Object Detection2017 IEEE International Conference on Computer Vision (ICCV)
J. Sathaye, S. Schneider, T. Stocker, B. Robinson, R. Scholes, G. Richels, R. Pachauri, B. Pittock, M. Prather, N. Sundararaman, R. Swart, T. Taniguchi, Dadi Zhou, E. Trenberth, I. Noble, R. Moreira, O. Canziani, R. Christ, U. Cubasch, O. Davidson, A. Bashmakov, T. Barker, T. Watson, L. Albritton, H. Gitay, D. Griggs, N. Leary, C. Magadza, J. McCarthy, F. Mitchell, M. Lal, Z. Kundzewicz, K. Halsnæs, J. Houghton, J. House, M. Munasinghe (2001)
A contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernment Panel on Climate Change
(2015)
Accelerated modern human
J. Ribera, D. Guera, Y. Chen, E.J. Delp (2019)
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2006)
Cost and efficiency
Rey Nicolas, M. Volpi, S. Joost, D. Tuia (2017)
Detecting animals in African Savanna with UAVs and the crowdsArXiv, abs/1709.01722
J. Barbedo, Luciano Koenigkan, T. Santos, P. Santos (2019)
A Study on the Detection of Cattle in UAV Images Using Deep LearningSensors (Basel, Switzerland), 19
J. Naudé, D. Joubert (2019)
The Aerial Elephant Dataset: A New Public Benchmark for Aerial Object Detection
K. Oksuz, Baris Cam, Sinan Kalkan, Emre Akbas (2019)
Imbalance Problems in Object Detection: A ReviewIEEE Transactions on Pattern Analysis and Machine Intelligence, 43
Javier Ribera, David Guera, Yuhao Chen, E. Delp (2018)
Locating Objects Without Bounding Boxes2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2010)
Large mammal population
T.‐Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár (2017)
Proceedings of the IEEE International Conference on Computer Vision
(2015)
Are unmanned aircraft systems (UAS
H. Jachmann (1991)
Evaluation of four survey methods for estimating elephant densitiesAfrican Journal of Ecology, 29
Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, Xindong Wu (2018)
Object Detection With Deep Learning: A ReviewIEEE Transactions on Neural Networks and Learning Systems, 30
Beibei Xu, Wensheng Wang, G. Falzon, P. Kwan, Leifeng Guo, Guipeng Chen, Amy Tait, D. Schneider (2020)
Automated cattle counting using Mask R-CNN in quadcopter vision systemComput. Electron. Agric., 171
Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, Serge Belongie (2016)
Feature Pyramid Networks for Object Detection2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
A. Watts, J. Perry, Scot Smith, M. Burgess, B. Wilkinson, Z. Szantoi, P. Ifju, H. Percival (2010)
Small Unmanned Aircraft Systems for Low-Altitude Aerial Surveys, 74
(1978)
Counting animals: revised second
Xiaoxiang Zhu, D. Tuia, Lichao Mou, Gui-Song Xia, Liangpei Zhang, Feng Xu, F. Fraundorfer (2017)
Deep Learning in Remote Sensing: A Comprehensive Review and List of ResourcesIEEE Geoscience and Remote Sensing Magazine, 5
Jiangmiao Pang, Kai Chen, Jianping Shi, H. Feng, Wanli Ouyang, Dahua Lin (2019)
Libra R-CNN: Towards Balanced Learning for Object Detection2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Petru Soviany, Radu Ionescu (2018)
Optimizing the Trade-Off between Single-Stage and Two-Stage Deep Object Detectors using Image Difficulty Prediction2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)
(2015)
Wildlife research and
Olga Russakovsky, Jia Deng, Hao Su, J. Krause, S. Satheesh, S. Ma, Zhiheng Huang, A. Karpathy, A. Khosla, Michael Bernstein, A. Berg, Li Fei-Fei (2014)
ImageNet Large Scale Visual Recognition ChallengeInternational Journal of Computer Vision, 115
(1978)
Counting animals: revised second edition. Handbook no. 1. serengeti ecological monitoring programme
(2017)
Linking the influence and
Nicolas Gaidet-Drapier, H. Fritz, M. Bourgarel, Pierre-Cyril Renaud, P. Poilecot, P. Chardonnet, C. Coid, D. Poulet, S. Bel (2006)
Cost and Efficiency of Large Mammal Census Techniques: Comparison of Methods for a Participatory Approach in a Communal Area, ZimbabweBiodiversity & Conservation, 15
Julie Linchant, Jonathan Lisein, Jean Semeki, P. Lejeune, C. Vermeulen (2015)
Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challengesMammal Review, 45
(2017)
Feature pyramid networks for object
G. Witmer (2005)
Wildlife population monitoring: some practical considerationsWildlife Research, 32
Robyn Hetem, A. Fuller, S. Maloney, D. Mitchell (2014)
Responses of large mammals to climate changeTemperature: Multidisciplinary Biomedical Journal, 1
R. Almond, M. Grooten, T. Peterson (2020)
Living Planet Report 2020 - Bending the curve of biodiversity loss
Survey and monitoring of wildlife populations are among the key elements in nature conservation. The use of unmanned aerial vehicles and light aircrafts as aerial image acquisition systems is growing, as they are cheaper alternatives to traditional census methods. However, the manual localization and identification of species within imagery can be time‐consuming and complex. Object detection algorithms, based on convolutional neural networks (CNNs), have shown a good capacity for animal detection. Nevertheless, most of the work has focused on binary detection cases (animal vs. background). The main objective of this study is to compare three recent detection algorithms to detect and identify African mammal species based on high‐resolution aerial images. We evaluated the performance of three multi‐class CNN algorithms: Faster‐RCNN, Libra‐RCNN and RetinaNet. Six species were targeted: topis (Damaliscus lunatus jimela), buffalos (Syncerus caffer), elephants (Loxodonta africana), kobs (Kobus kob), warthogs (Phacochoerus africanus) and waterbucks (Kobus ellipsiprymnus). The best model was then applied to a case study using an independent dataset. The best model was the Libra‐RCNN, with the best mean average precision (0.80 ± 0.02), the lowest degree of interspecies confusion (3.5 ± 1.4%) and the lowest false positive per true positive ratio (1.7 ± 0.2) on the test set. This model was able to detect and correctly identify 73% of all individuals (1115), find 43 individuals of species other than those targeted and detect 84 missed individuals on our independent UAV dataset, with an average processing speed of 12 s/image. This model showed better detection performance than previous studies dealing with similar habitats. It was able to differentiate six animal species in nadir aerial images. Although limitations were observed with warthog identification and individual detection in herds, this model can save time and can perform precise surveys in open savanna.
Remote Sensing in Ecology and Conservation – Wiley
Published: Apr 1, 2022
Keywords: African mammals; CNNs; deep learning; multispecies; UAV; wildlife monitoring
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.