Access the full text.
Sign up today, get DeepDyve free for 14 days.
Colin Jackson, Heiko Langner, Jessica Donahoe-Christiansen, W. Inskeep, T. McDermott (2001)
Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring.Environmental microbiology, 3 8
D. Ward, M. Ferris, S. Nold, M. Bateson (1998)
A Natural View of Microbial Biodiversity within Hot Spring Cyanobacterial Mat CommunitiesMicrobiology and Molecular Biology Reviews, 62
G. Kowalchuk, J. Stephen (2001)
Ammonia-oxidizing bacteria: a model for molecular microbial ecology.Annual review of microbiology, 55
Jessica Donahoe-Christiansen, S. D’Imperio, C. Jackson, W. Inskeep, T. McDermott (2004)
Arsenite-Oxidizing Hydrogenobaculum Strain Isolated from an Acid-Sulfate-Chloride Geothermal Spring in Yellowstone National ParkApplied and Environmental Microbiology, 70
(2005)
Geomicrobiology of acid-sulfate-chloride springs in Yellowstone National Park. In Geothermal Biology and Geochemistry of Yellowstone National Park (eds Inskeep WP, McDermott TR)
R. Macur, C. Jackson, L. Botero, T. McDermott, W. Inskeep (2004)
Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil.Environmental science & technology, 38 1
R. Mukhopadhyay, B. Rosen, L. Phung, S. Silver (2002)
Microbial arsenic: from geocycles to genes and enzymes.FEMS microbiology reviews, 26 3
K. Mayer, E. Frind, D. Blowes (2002)
Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactionsWater Resources Research, 38
P. Norris, D. Clark, Jonathan Owen, S. Waterhouse (1996)
Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria.Microbiology, 142 ( Pt 4)
J. Sale (1948)
Standard Methods for the Examination of Water and SewageJournal of AOAC International, 31
B. Rosen (2002)
Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes.Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 133 3
J. Ball, R. McCleskey, D. Nordstrom, J. Holloway, P. Verplanck, Sabin Sturtevant (2002)
Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 1999-2000
W. Inskeep, R. Macur, Gregory Harrison, B. Bostick, S. Fendorf (2004)
Biomineralization of As(V)-hydrous ferric oxyhydroxide in microbial mats of an acid-sulfate-chloride geothermal spring, Yellowstone National Park 1 1 Associate editor: L. B. BenningGeochimica et Cosmochimica Acta
D. Newman, J. Banfield (2002)
Geomicrobiology: How Molecular-Scale Interactions Underpin Biogeochemical SystemsScience, 296
J. Spear, Jeffrey Walker, N. Pace (2006)
Hydrogen and Primary Productivity : Inference of Biogeochemistry from Phylogeny in a Geothermal Ecosystem
Stumm Stumm (1984)
Interpreation and measurement of redox intensity in natural watersSchweiz Zeitschrift für Hyrdology, 46
J. Kjems, H. Leffers, T. Olesen, I. Holz, R. Garrett (1990)
Sequence, Organization and Transcription of the Ribosomal RNA Operon and the Downstream tRNA and Protein Genes in the Archaebacterium Thermofilum pendentsSystematic and Applied Microbiology, 13
C. Cervantes, G. Ji, J. Ramírez, S. Silver (1994)
Resistance to arsenic compounds in microorganisms.FEMS microbiology reviews, 15 4
O. Bruneel, J. Personné, C. Casiot, M. Leblanc, F. Elbaz-Poulichet, B. Mahler, A. Flèche, P. Grimont (2003)
Mediation of arsenic oxidation by Thiomonas sp. in acid‐mine drainage (Carnoulès, France)Journal of Applied Microbiology, 95
W. Stumm, J. Morgan (1970)
Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters
J. Allison, D. Brown, K. Novo-Gradac (1991)
MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3. 0 user's manual
Segerer Segerer, Trincone Trincone, Gahrtz Gahrtz, Stetter Stetter (1991)
Stygiolobus azoricus gen. nov., sp. nov., represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order SulfolobalesInternational Journal of Systematic Bacteriology, 41
T. Itoh, Ken-ichiro Suzuki, P. Sanchez, T. Nakase (2003)
Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines.International journal of systematic and evolutionary microbiology, 53 Pt 4
E. Lebrun, M. Brugna, F. Baymann, Daniel Muller, D. Lièvremont, M. Lett, W. Nitschke (2003)
Arsenite oxidase, an ancient bioenergetic enzyme.Molecular biology and evolution, 20 5
J. Amend, K. Rogers, E. Shock, S. Gurrieri, S. Inguaggiato (2003)
Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern ItalyGeobiology, 1
K. Kashefi, D. Holmes, A. Reysenbach, D. Lovley (2002)
Use of Fe(III) as an Electron Acceptor To Recover Previously Uncultured Hyperthermophiles: Isolation and Characterization of Geothermobacterium ferrireducens gen. nov., sp. novApplied and Environmental Microbiology, 68
Shima Shima, Suzuki Suzuki (1993)
Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen?oxidizing bacterium requiring elemental sulfur for growthInternational Journal of Systematic Bacteriology, 43
Laura Croal, J. Gralnick, Davin Malasarn, D. Newman (2004)
The genetics of geochemistry.Annual review of genetics, 38
J. Spear, Jeffrey Walker, T. McCollom, N. Pace (2005)
Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem.Proceedings of the National Academy of Sciences of the United States of America, 102 7
J. Santini, L. Sly, R. Schnagl, J. Macy (2000)
A New Chemolithoautotrophic Arsenite-Oxidizing Bacterium Isolated from a Gold Mine: Phylogenetic, Physiological, and Preliminary Biochemical StudiesApplied and Environmental Microbiology, 66
J. Amend, E. Shock (2001)
Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria.FEMS microbiology reviews, 25 2
D. Nordstrom, G. Southam (1997)
Geomicrobiology of sulfide mineral oxidationReviews in Mineralogy & Geochemistry, 35
C. Davis, W. Knocke, M. Edwards (2001)
Implications of aqueous silica sorption to iron hydroxide: mobilization of iron colloids and interference with sorption of arsenate and humic substances.Environmental science & technology, 35 15
A. Reysenbach, A. Banta, S. Civello, J. Daly, K. Mitchel, S. Lalonde, K. Konhauser, Ann Rodman, K. Rusterholtz, C. Takacs-Vesbach (2006)
Aquificales in Yellowstone National Park
R. Macur, H. Langner, B. Kocar, W. Inskeep (2004)
Linking geochemical processes with microbial community analysis: successional dynamics in an arsenic‐rich, acid‐sulphate‐chloride geothermal springGeobiology, 2
A. Segerer, A. Trincone, M. Gahrtz, K. Stetter (1991)
Stygiolobus azoricus gen. nov., sp. nov. Represents a Novel Genus of Anaerobic, Extremely ThermoacidInternational Journal of Systematic and Evolutionary Microbiology
(2005)
Geochemical sources of energy for microbial metabolism in hydrothermal ecosystems : Obsidian Pool , Yellowstone National Park
W. Stumm (1984)
Interpretation and measurement of redox intensity in natural watersSchweizerische Zeitschrift für Hydrologie, 46
J. Santini, L. Sly, A. Wen, Dean Comrie, Pascal Wulf-Durand, J. Macy (2002)
New Arsenite-Oxidizing Bacteria Isolated from Australian Gold Mining Environments--Phylogenetic RelationshipsGeomicrobiology Journal, 19
G. Luther, B. Glazer, Shufen Ma, Robert Trouwborst, B. Shultz, G. Druschel, Charoenwan Kraiya (2003)
Iron and Sulfur Chemistry in a Stratified Lake: Evidence for Iron-Rich Sulfide ComplexesAquatic Geochemistry, 9
Jungyill Choi, S. Hulseapple, M. Conklin, J. Harvey (1998)
Modeling CO2 degassing and pH in a stream-aquifer systemJournal of Hydrology, 209
T. Peeples, R. Kelly (1995)
Bioenergetic Response of the Extreme Thermoacidophile Metallosphaera sedula to Thermal and Nutritional StressesApplied and Environmental Microbiology, 61
(2005)
GenBank
R. Stauffer, J. Thompson (1984)
Arsenic and antimony in geothermal waters of Yellowstone National Park, Wyoming, USAGeochimica et Cosmochimica Acta, 48
R. Huber, W. Eder, Stefan Heldwein, G. Wanner, H. Huber, R. Rachel, K. Stetter (1998)
Thermocrinis ruber gen. nov., sp. nov., a Pink-Filament-Forming Hyperthermophilic Bacterium Isolated from Yellowstone National ParkApplied and Environmental Microbiology, 64
T. Jackson, R. Ramaley, W. Meinschein (1973)
Thermomicrobium, a New Genus of Extremely Thermophilic BacteriaInternational Journal of Systematic and Evolutionary Microbiology, 23
F. Battaglia-Brunet (2004)
Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoules, France).Journal of applied microbiology, 96 5
B. Jackson, M. McInerney (2002)
Anaerobic microbial metabolism can proceed close to thermodynamic limitsNature, 415
J. Wilkie, J. Hering (1998)
Rapid Oxidation of Geothermal Arsenic(III) in Streamwaters of the Eastern Sierra NevadaEnvironmental Science & Technology, 32
D. Nordstrom, J. Ball, R. McCleskey (2005)
Ground water to surface water: Chemistry of thermal outflows in Yellowstone National Park
Spear Spear, Walker Walker, McCollum McCollum, Pace Pace (2005a)
Hydrogen and bioenergetics in the Yellowstone geothermal ecosystemProceedings of the National Academy of Sciences, USA, 102
R. Oremland, J. Stolz (2003)
The Ecology of ArsenicScience, 300
Jackson Jackson, Ramaley Ramaley, Meinschein Meinschein (1973)
Thermomicrobium , a new genus of extremely thermophilic bacteriaInternational Journal of Systematic Bacteriology, 23
W. Eder, R. Huber (2002)
New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov.Extremophiles, 6
M. Miroshnichenko, F. Rainey, H. Hippe, N. Chernyh, N. Kostrikina, E. Bonch‐Osmolovskaya (1998)
Desulfurella kamchatkensis sp. nov. and desulfurella propionica sp. nov., new sulfur-respiring thermophilic bacteria from Kamchatka thermal environments.International journal of systematic bacteriology, 48 Pt 2
(2004)
Contribution to the study of the geochemical and bacteriological mechanisms in the transport of mining pollution at the site of Carnoulès (Gard, France)
A. Reysenbach, E. Shock (2002)
Merging Genomes with Geochemistry in Hydrothermal EcosystemsScience, 296
M. Madigan, J. Martinko, J. Parker (1996)
Brock Biology of Microorganisms
R. Fournier (1989)
Geochemistry and Dynamics of the Yellowstone National Park Hydrothermal SystemAnnual Review of Earth and Planetary Sciences, 17
Inskeep Inskeep, Macur Macur, Harrison Harrison, Bostick Bostick, Fendorf Fendorf (2004)
Biomineralization of As(V)?hydrous ferric oxyhydroxide in microbial mats of an acid?sulfate?chloride geothermal spring, Yellowstone National ParkGeochimica et Cosmochimica Acta, 68
S. Silver, L. Phung (2005)
Genes and Enzymes Involved in Bacterial Oxidation and Reduction of Inorganic ArsenicApplied and Environmental Microbiology, 71
Tanya To, D. Nordstrom, K. Cunningham, J. Ball, R. McCleskey (1999)
New Method for the Direct Determination of Dissolved Fe(III) Concentration in Acid Mine WatersEnvironmental Science & Technology, 33
H. Langner, C. Jackson, T. McDermott, W. Inskeep (2001)
Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park.Environmental science & technology, 35 16
B. Jähne, H. Haussecker (1998)
AIR-WATER GAS EXCHANGEAnnual Review of Fluid Mechanics, 30
Barrie Johnson, N. Okibe, F. Roberto (2003)
Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristicsArchives of Microbiology, 180
Yifeng Wang, P. Cappellen (1996)
A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sedimentsGeochimica et Cosmochimica Acta, 60
R. Oremland, S. Hoeft, J. Santini, N. Bano, Ryan Hollibaugh, J. Hollibaugh (2002)
Anaerobic Oxidation of Arsenite in Mono Lake Water and by a Facultative, Arsenite-Oxidizing Chemoautotroph, Strain MLHE-1Applied and Environmental Microbiology, 68
S. Shima, Ken-ichiro Suzuki (1993)
Hydrogenobacter acidophilus sp. nov., a Thermoacidophilic, Aerobic, Hydrogen-Oxidizing Bacterium Requiring Elemental Sulfur for GrowthInternational Journal of Systematic and Evolutionary Microbiology, 43
Hoehler Hoehler, Alperin Alperin, Albert Albert, Martens Martens (2001)
Apparent minimum free energy requirements for methanogenic Archaea and sulfate?reducing bacteria in an anoxic marine sedimentFEMS Microbiology Ecology, 38
Xiaoguang Meng, Sunbaek Bang, G. Korfiatis (2000)
Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chlorideWater Research, 34
Daniel Muller, D. Lièvremont, Diliana Simeonova, J. Hubert, M. Lett (2003)
Arsenite Oxidase aox Genes from a Metal-Resistant β-ProteobacteriumJournal of Bacteriology, 185
T. Fuchs, H. Huber, Kristina Teiner, S. Burggraf, K. Stetter (1995)
Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic Archaeum, isolated from a uranium mine in GermanySystematic and Applied Microbiology, 18
T. Gihring, G. Druschel, R. McCleskey, R. Hamers, J. Banfield (2001)
Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations.Environmental science & technology, 35 19
M. Aoshima, Y. Nishibe, M. Hasegawa, A. Yamagishi, T. Oshima (1996)
Cloning and sequencing of a gene encoding 16S ribosomal RNA from a novel hyperthermophilic archaebacterium NC12.Gene, 180 1-2
Park (2001)
Rapid Oxidation of Arsenite in a Hot Spring Ecosystem , Yellowstone National
T. Itoh, Ken-ichiro Suzuki, T. Nakase (2002)
Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan.International journal of systematic and evolutionary microbiology, 52 Pt 4
R. Hanson, Thomas Hanson (1996)
Methanotrophic bacteria.Microbiological reviews, 60 2
P. Aguiar, T. Beveridge, A. Reysenbach (2004)
Sulfurihydrogenibium azorense, sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores.International journal of systematic and evolutionary microbiology, 54 Pt 1
ABSTRACT Chemolithotrophic micro‐organisms are important primary producers in high‐temperature geothermal environments and may catalyse a number of different energetically favourable redox reactions as a primary energy source. Analysis of geochemical constituents followed by chemical speciation and subsequent calculation of reaction free energies (ΔGrxn) is a useful tool for evaluating the thermodynamic favourability and potential energy available for microbial metabolism. The primary goal of this study was to examine relationships among geochemical gradients and microbial population distribution, and to evaluate the utility of energetic approaches for predicting microbial metabolism from free‐energy calculations, utilizing as examples, several geothermal habitats in Yellowstone National Park where thorough geochemical and phylogenetic analyses have been performed. Acidic (pH ∼ 3) and near‐neutral (pH ∼ 6–7) geothermal springs were chosen for their range in geochemical properties. Aqueous and solid phase samples obtained from the source pools and the outflow channels of each spring were characterized for all major chemical constituents using laboratory and field methods to accurately measure the concentrations of predominant oxidized and reduced species. Reaction free energies (ΔGrxn) for 33 oxidation–reduction reactions potentially important to chemolithotrophic micro‐organisms were calculated at relevant spring temperatures after calculating ion activities using an aqueous equilibrium model. Free‐energy values exhibit significant variation among sites for reactions with pH dependence. For example, free‐energy values for reactions involving Fe3+ are especially variable across sites due in large part to the pH dependence of Fe3+ activity, and exhibit changes of up to 40 kJ mol−1 electron from acidic to near neutral geothermal springs. Many of the detected 16S rRNA gene sequences represent organisms whose metabolisms are consistent with exergonic processes. However, sensitivity analyses demonstrated that reaction free energies do not generally represent the steep gradients in local geochemical conditions resulting from air–water gas exchange and solid phase deposition that are important in defining microbial habitats and 16S rRNA gene sequence distribution within geothermal outflow channels.
Geobiology – Wiley
Published: Oct 1, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.