Access the full text.
Sign up today, get DeepDyve free for 14 days.
Spintronics is a quantum technology which aims at adding the spin quantum degree of freedom to conventional CMOS electronics. Since the discovery of the giant magneto‐resistance in 1988, considered as the birth of this field, spintronics continues flooding the market with plethora of devices used in everyday life applications such as hard drive read heads or magnetic random‐access memories, and so on. From a fundamental research perspective, the field is still blooming bringing post‐CMOS perspectives technologically closer to the reality with, for instance, prototypes of all‐spin‐logic circuits and neuromorphic chips. To sustain this intense research activity, a quest for new platform materials is also taking place not only to enhance existing performances but also to generate novel functionalities. In this vein, carbon nanostructures such as molecules, graphene, and carbon nanotubes are among the most sought‐after materials. In this review, spin transport experiments in carbon nanotubes and graphene are first detailed and then, the necessity to consider new hybrid interfaces are highlighted for a better control of the spin injection at the quantum device level.
Advanced Quantum Technologies – Wiley
Published: Jun 1, 2022
Keywords: carbon nanotubes; graphene; molecules; quantum transport; spinterface; spintronics
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.