Access the full text.
Sign up today, get DeepDyve free for 14 days.
E. Dowd, C. Monville, E. Torres, S. Dunnett (2005)
The Corridor Task: A simple test of lateralised response selection sensitive to unilateral dopamine deafferentation and graft-derived dopamine replacement in the striatumBrain Research Bulletin, 68
M. Goldberg, S. Fleming, J. Palacino, C. Cepeda, H. Lam, A. Bhatnagar, E. Meloni, Nanping Wu, L. Ackerson, G. Klapstein, M. Gajendiran, B. Roth, M. Chesselet, N. Maidment, M. Levine, Jie Shen (2003)
Parkin-deficient Mice Exhibit Nigrostriatal Deficits but Not Loss of Dopaminergic Neurons*Journal of Biological Chemistry, 278
Hansen Van, Zandt Law, W. Briles, Longen-Ecker Pazderka, J. Gavora, R Spencer, Ruth, W Brilei, R Stone, Science, W Droege, Miggieno Hala, Ziegler, D. Ewert, W Gilmour, M Vilhelmovb, J Maggiano, K. Pink, J Hkla, Eiiv Hartmanovi, M Simonsen, In Hkla, A. Benedict, Plenum, I. Doherty, R. Zinkernagle (1983)
Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.Science, 219 4587
H. Braak, K. Tredici, U. Rüb, R. Vos, Ernst Steur, E. Braak (2003)
Staging of brain pathology related to sporadic Parkinson’s diseaseNeurobiology of Aging, 24
M. Inden, Y. Kitamura, Mari Abe, Aya Tamaki, K. Takata, T. Taniguchi (2011)
Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice.Biological & pharmaceutical bulletin, 34 1
K. Luk, Victoria Kehm, J. Carroll, Bin Zhang, Patrick O’Brien, J. Trojanowski, V. Lee (2012)
Pathological α-Synuclein Transmission Initiates Parkinson-like Neurodegeneration in Nontransgenic MiceScience, 338
Xinnan Wang, Dominic Winter, Ghazaleh Ashrafi, Julia Schlehe, Y. Wong, D. Selkoe, S. Rice, J. Steen, M. LaVoie, T. Schwarz (2011)
PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial MotilityCell, 147
T. Dawson, H. Ko, V. Dawson (2010)
Genetic Animal Models of Parkinson's DiseaseNeuron, 66
Von Coelln (2004)
Loss of locus coeruleus neurons and reduced startle in parkin null miceProc. Natl. Acad. Sci. U.S.A., 101
Greten-Harrison (2010)
???-Synuclein triple knockout mice reveal age-dependent neuronal dysfunctionProc. Natl. Acad. Sci. U.S.A., 107
Tong (2009)
R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in miceProc. Natl. Acad. Sci. U.S.A., 106
D. Hinzen, O. Hornykiewicz, W. Kobinger, L. Pichler, C. Pifl, G. Schingnitz (1986)
The dopamine autoreceptor agonist B-HT 920 stimulates denervated postsynaptic brain dopamine receptors in rodent and primate models of Parkinson's disease: a novel approach to treatment.European journal of pharmacology, 131 1
J. Bendor, Todd Logan, R. Edwards (2013)
The Function of α-SynucleinNeuron, 79
Derek Narendra, Atsushi Tanaka, D. Suen, R. Youle (2008)
Parkin is recruited selectively to impaired mitochondria and promotes their autophagyThe Journal of Cell Biology, 183
S. Przedborski, M. Vila (2003)
The 1‐Methyl‐4‐Phenyl‐1,2,3,6‐Tetrahydropyridine Mouse ModelAnnals of the New York Academy of Sciences, 991
R. Drolet, J. Cannon, L. Montero, J. Greenamyre (2009)
Chronic rotenone exposure reproduces Parkinson's disease gastrointestinal neuropathologyNeurobiology of Disease, 36
B. Shook, S. Rassnick, M. Osborne, S. Davis, L. Westover, Jamie Boulet, Daniel Hall, K. Rupert, G. Heintzelman, Kristin Hansen, D. Chakravarty, J. Bullington, R. Russell, Shawn Branum, K. Wells, S. Damon, Scott Youells, Xun Li, Derek Beauchamp, D. Palmer, Mayra Reyes, K. Demarest, Yuting Tang, K. Rhodes, P. Jackson (2010)
In vivo characterization of a dual adenosine A2A/A1 receptor antagonist in animal models of Parkinson's disease.Journal of medicinal chemistry, 53 22
Xianting Li, J. Patel, Jing Wang, M. Avshalumov, C. Nicholson, J. Buxbaum, G. Elder, M. Rice, Z. Yue (2010)
Enhanced Striatal Dopamine Transmission and Motor Performance with LRRK2 Overexpression in Mice Is Eliminated by Familial Parkinson's Disease Mutation G2019SThe Journal of Neuroscience, 30
E. Masliah, E. Rockenstein, I. Veinbergs, M. Mallory, M. Hashimoto, A. Takeda, Y. Sagara, A. Sisk, L. Mucke (2000)
Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders.Science, 287 5456
Tong (2010)
Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of ?-synuclein, and apoptotic cell death in aged miceProc. Natl. Acad. Sci. U.S.A., 107
E. Andrés-Mateos, R. Mejías, M. Sasaki, X. Li, B. Lin, S. Biskup, Li Zhang, Rebecca Banerjee, B. Thomas, Lichuan Yang, Guosheng Liu, M. Beal, D. Huso, T. Dawson, V. Dawson (2009)
Unexpected Lack of Hypersensitivity in LRRK2 Knock-Out Mice to MPTP (1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine)The Journal of Neuroscience, 29
W. Xie, Xu-ping Li, Chao Li, Wen Zhu, J. Jankovic, W. Le (2010)
Proteasome inhibition modeling nigral neuron degeneration in Parkinson’s diseaseJournal of Neurochemistry, 115
A. McCormack, D. Monte (2003)
Effects of l‐dopa and other amino acids against paraquat‐induced nigrostriatal degenerationJournal of Neurochemistry, 85
Y. Matsuoka, M. Vila, S. Lincoln, A. McCormack, M. Picciano, J. Lafrancois, Xin Yu, D. Dickson, W. Langston, E. McGowan, M. Farrer, J. Hardy, K. Duff, S. Przedborski, D. Monte (2001)
Lack of Nigral Pathology in Transgenic Mice Expressing Human α-Synuclein Driven by the Tyrosine Hydroxylase PromoterNeurobiology of Disease, 8
D. Ramonet, J. Daher, J. Daher, B. Lin, K. Stafa, Jaekwang Kim, Jaekwang Kim, Rebecca Banerjee, M. Westerlund, O. Pletnikova, Liliane Glauser, Lichuan Yang, Y. Liu, D. Swing, M. Beal, J. Troncoso, J. McCaffery, N. Jenkins, N. Copeland, D. Galter, B. Thomas, Michael Lee, Michael Lee, T. Dawson, V. Dawson, D. Moore (2011)
Dopaminergic Neuronal Loss, Reduced Neurite Complexity and Autophagic Abnormalities in Transgenic Mice Expressing G2019S Mutant LRRK2PLoS ONE, 6
Yanping Li, Wencheng Liu, T. Oo, Lei Wang, Lei Wang, Yi Tang, V. Jackson-Lewis, Chun Zhou, Kindiya Geghman, M. Bogdanov, M. Bogdanov, S. Przedborski, M. Beal, R. Burke, Chenjian Li (2009)
Mutant LRRK2R1441G BAC transgenic mice recapitulate cardinal features of Parkinson's diseaseNature Neuroscience, 12
F. Fornai, O. Schlüter, P. Lenzi, M. Gesi, R. Ruffoli, M. Ferrucci, G. Lazzeri, C. Busceti, Fabrizio Pontarelli, G. Battaglia, A. Pellegrini, F. Nicoletti, S. Ruggieri, A. Paparelli, T. Südhof (2005)
Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein.Proceedings of the National Academy of Sciences of the United States of America, 102 9
Mats Ekstrand, D. Galter (2009)
The MitoPark Mouse - an animal model of Parkinson's disease with impaired respiratory chain function in dopamine neurons.Parkinsonism & related disorders, 15 Suppl 3
A. Manning-Boğ, S. Reaney, Vivian Chou, L. Johnston, A. McCormack, J. Johnston, J. Langston, D. Monte (2006)
Lack of nigrostriatal pathology in a rat model of proteasome inhibitionAnnals of Neurology, 60
J. Bové, Chun Zhou, V. Jackson-Lewis, Julie Taylor, Y. Chu, H. Rideout, D. Wu, J. Kordower, L. Petrucelli, S. Przedborski (2006)
Proteasome inhibition and Parkinson's disease modelingAnnals of Neurology, 60
R. Coelln, B. Thomas, J. Savitt, K. Lim, M. Sasaki, E. Hess, V. Dawson, T. Dawson (2004)
Loss of locus coeruleus neurons and reduced startle in parkin null mice.Proceedings of the National Academy of Sciences of the United States of America, 101 29
C. Yong-Kee, bullet Sidorova, bullet Hanif, bullet Perera, bullet Nash (2011)
Mitochondrial Dysfunction Precedes Other Sub-Cellular Abnormalities in an In Vitro Model Linked with Cell Death in Parkinson’s DiseaseNeurotoxicity Research, 21
U. Ungerstedt (1968)
6-Hydroxy-dopamine induced degeneration of central monoamine neurons.European journal of pharmacology, 5 1
Yufeng Yang, S. Gehrke, Y. Imai, Zhinong Huang, Yingshi Ouyang, Ji-Wu Wang, Lichuan Yang, M. Beal, H. Vogel, B. Lu (2006)
Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin.Proceedings of the National Academy of Sciences of the United States of America, 103 28
Youren Tong, H. Yamaguchi, Emilie Giaime, S. Boyle, Raphael Kopan, R. Kelleher, Jie Shen (2010)
Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged miceProceedings of the National Academy of Sciences, 107
G. Tofaris, Pablo Reitböck, T. Humby, S. Lambourne, M. O'Connell, B. Ghetti, H. Gossage, P. Emson, L. Wilkinson, M. Goedert, M. Spillantini (2006)
Pathological Changes in Dopaminergic Nerve Cells of the Substantia Nigra and Olfactory Bulb in Mice Transgenic for Truncated Human α-Synuclein(1–120): Implications for Lewy Body DisordersThe Journal of Neuroscience, 26
B. Jeon, V. Jackson-Lewis, R. Burke (1995)
6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death.Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration, 4 2
M. Lundblad, B. Picconi, H. Lindgren, M. Cenci (2004)
A model of l-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal functionNeurobiology of Disease, 16
B. Lee, Joo-Ho Shin, J.J.A. vanKampen, L. Petrucelli, Andrew, B. West, H. Ko, Y. Il, K. Maguire-Zeiss, J. William, Bowers, H. Federoff, V. Dawson, T. Dawson (2016)
Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease.
T. Kitada, A. Pisani, Douglas Porter, H. Yamaguchi, A. Tscherter, G. Martella, P. Bonsi, Chen Zhang, E. Pothos, Jie Shen (2007)
Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient miceProceedings of the National Academy of Sciences, 104
Dauer (2002)
Resistance of ?-synuclein null mice to the parkinsonian neurotoxin MPTPProc. Natl. Acad. Sci. U.S.A., 99
Jessie Martin, J. Klucken, T. Outeiro, Paul Nguyen, C. Keller-McGandy, I. Cantuti-castelvetri, T. Grammatopoulos, D. Standaert, B. Hyman, P. McLean (2007)
Dopaminergic neuron loss and up‐regulation of chaperone protein mRNA induced by targeted over‐expression of alpha‐synuclein in mouse substantia nigraJournal of Neurochemistry, 100
Stephanie Janezic, S. Threlfell, Paul Dodson, M. Dowie, Tonya Taylor, Dawid Potgieter, L. Parkkinen, S. Senior, Sabina Anwar, B. Ryan, T. Deltheil, P. Kosillo, M. Cioroch, Katharina Wagner, O. Ansorge, D. Bannerman, J. Bolam, P. Magill, S. Cragg, R. Wade-Martins (2013)
Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson modelProceedings of the National Academy of Sciences, 110
P. Rappold, M. Cui, Adrianne Chesser, J. Tibbett, J. Grima, L. Duan, Namita Sen, J. Javitch, K. Tieu (2011)
Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3Proceedings of the National Academy of Sciences, 108
Jeehye Park, Sung Lee, Sungkyu Lee, YongSung Kim, Saera Song, Sunhong Kim, E. Bae, Jaeseob Kim, M. Shong, Jin-Man Kim, Jongkyeong Chung (2006)
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkinNature, 441
M. Spillantini, M. Schmidt, V. Lee, J. Trojanowski, R. Jakes, M. Goedert (1997)
α-Synuclein in Lewy bodiesNature, 388
Janezic (2013)
Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson modelProc. Natl. Acad. Sci. U.S.A., 110
Maddalena Tasselli, Maddalena Tasselli, Tanguy Chaumette, Tanguy Chaumette, Sebastien Paillusson, Sebastien Paillusson, Y. Monnet, Y. Monnet, A. Lafoux, C. Huchet-Cadiou, P. Aubert, P. Aubert, S. Hunot, S. Hunot, P. Derkinderen, M. Neunlist, M. Neunlist (2013)
Effects of oral administration of rotenone on gastrointestinal functions in miceNeurogastroenterology & Motility, 25
H. Putten, K. Wiederhold, A. Probst, S. Barbieri, C. Mistl, S. Danner, S. Kauffmann, K. Hofele, W. Spooren, M. Ruegg, Shuo Lin, P. Caroni, B. Sommer, M. Tolnay, G. Bilbe (2000)
Neuropathology in Mice Expressing Human α-SynucleinThe Journal of Neuroscience, 20
D. Womer, B. Jones, V. Erwin (1994)
Characterization of dopamine transporter and locomotor effects of cocaine, GBR 12909, epidepride, and SCH 23390 in C57BL and DBA micePharmacology Biochemistry and Behavior, 48
M. Chesselet, F. Richter, Chunni Zhu, I. Magen, Melanie Watson, S. Subramaniam (2012)
A Progressive Mouse Model of Parkinson’s Disease: The Thy1-aSyn (“Line 61”) MiceNeurotherapeutics, 9
Mats Ekstrand, M. Terzioğlu, D. Galter, Shunwei Zhu, C. Hofstetter, E. Lindqvist, S. Thams, A. Bergstrand, F. Hansson, A. Trifunovic, B. Hoffer, S. Cullheim, A. Mohammed, L. Olson, N. Larsson (2007)
Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neuronsProceedings of the National Academy of Sciences, 104
Pablo Garcia-Reitböck, O. Anichtchik, A. Bellucci, M. Iovino, C. Ballini, E. Fineberg, B. Ghetti, L. Corte, P. Spano, G. Tofaris, M. Goedert, M. Spillantini (2010)
SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson's disease.Brain : a journal of neurology, 133 Pt 7
I. Clark, M. Dodson, Changan Jiang, Joseph Cao, Jun Huh, J. Seol, S. Yoo, B. Hay, M. Guo (2006)
Drosophila pink1 is required for mitochondrial function and interacts genetically with parkinNature, 441
Andreas Kupsch, Manfred Gerlach, Sigrid Pupeter, J. Sautter, Albrecht Dirr, Guy Arnold, Wolfgang Opitz, Horst Przuntek, Peter Riederer, Wolfgang Oertel (1995)
Pretreatment with nimodipine prevents MPTP-induced neurotoxicity at the nigral, but not at the striatal level in mice.Neuroreport, 6 4
G. Höglinger, J. Féger, A. Prigent, P. Michel, K. Parain, P. Champy, M. Ruberg, W. Oertel, E. Hirsch (2003)
Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in ratsJournal of Neurochemistry, 84
K. McNaught, D. Perl, A. Brownell, C. Olanow (2004)
Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's diseaseAnnals of Neurology, 56
Yun Chen, G. Dorn (2013)
PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged MitochondriaScience, 340
J. Viyoch, S. Ohdo, E. Yukawa, S. Higuchi (2001)
Dosing time-dependent tolerance of catalepsy by repetitive administration of haloperidol in mice.The Journal of pharmacology and experimental therapeutics, 298 3
Ekstrand (2007)
Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neuronsProc. Natl. Acad. Sci. U.S.A., 104
S. Stott, R. Barker (2014)
Time course of dopamine neuron loss and glial response in the 6‐OHDA striatal mouse model of Parkinson's diseaseEuropean Journal of Neuroscience, 39
S. Chandra, G. Gallardo, R. Fernández-Chacón, O. Schlüter, T. Südhof (2005)
α-Synuclein Cooperates with CSPα in Preventing NeurodegenerationCell, 123
Rappold (2011)
Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3Proc. Natl. Acad. Sci. U.S.A., 108
Chandana Kondapalli, A. Kazlauskaitė, Ning Zhang, Helen Woodroof, D. Campbell, Robert Gourlay, L. Burchell, H. Walden, Thomas Macartney, M. Deák, A. Knebel, D. Alessi, M. Muqit (2012)
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65Open Biology, 2
P. Sanberg (1980)
Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptorsNature, 284
Youren Tong, A. Pisani, G. Martella, Maha Karouani, H. Yamaguchi, E. Pothos, Jie Shen (2009)
R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in miceProceedings of the National Academy of Sciences, 106
J. Itier, P. Ibáñez, M. Mena, N. Abbas, C. Cohen-Salmon, G. Bohme, M. Laville, J. Pratt, O. Corti, L. Pradier, G. Ret, C. Joubert, Magali Periquet, F. Araujo, J. Negroni, M. Casarejos, S. Canals, R. Solano, A. Serrano, E. Gallego, Marina Sánchez, P. Denéfle, J. Benavides, G. Tremp, T. Rooney, A. Brice, J. Yébenes (2003)
Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse.Human molecular genetics, 12 18
R. Betarbet, Rosa Canet-Avilés, T. Sherer, P. Mastroberardino, C. McLendon, Jin-ho Kim, S. Lund, Hye-Mee Na, Georgia Taylor, Neil Bence, R. Kopito, Byoung Seo, T. Yagi, A. Yagi, G. Klinefelter, M. Cookson, J. Greenamyre (2006)
Intersecting pathways to neurodegeneration in Parkinson's disease: Effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin–proteasome systemNeurobiology of Disease, 22
Günter Höglinger, W. Oertel, E. Hirsch (2006)
The rotenone model of parkinsonism--the five years inspection.Journal of neural transmission. Supplementum, 70
T. Kitada, Youren Tong, C. Gautier, Jie Shen (2009)
Absence of nigral degeneration in aged parkin/DJ‐1/PINK1 triple knockout miceJournal of Neurochemistry, 111
S. Przedborski, M. Vila (2003)
The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson's disease.Annals of the New York Academy of Sciences, 991
M. Goldberg, A. Pisani, M. Haburcak, T. Vortherms, T. Kitada, C. Costa, Youren Tong, G. Martella, A. Tscherter, Andrea Martins, G. Bernardi, B. Roth, E. Pothos, P. Calabresi, Jie Shen (2005)
Nigrostriatal Dopaminergic Deficits and Hypokinesia Caused by Inactivation of the Familial Parkinsonism-Linked Gene DJ-1Neuron, 45
Luana Skalisz, V. Beijamini, S. Joca, M. Vital, C. Cunha, R. Andreatini (2002)
Evaluation of the face validity of reserpine administration as an animal model of depression–Parkinson's disease associationProgress in Neuro-Psychopharmacology and Biological Psychiatry, 26
R. Heikkila, A. Hess, R. Duvoisin (1984)
Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice.Science, 224 4656
Becket Greten-Harrison, M. Polydoro, Megumi Morimoto-Tomita, L. Diao, Andrew Williams, Esther Nie, S. Makani, Ning Tian, P. Castillo, V. Buchman, S. Chandra (2010)
αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunctionProceedings of the National Academy of Sciences, 107
W. Dauer, N. Kholodilov, M. Vila, A. Trillat, Rose Goodchild, K. Larsen, R. Staal, K. Tieu, Y. Schmitz, Chao Yuan, M. Rocha, V. Jackson-Lewis, S. Hersch, D. Sulzer, S. Przedborski, R. Burke, R. Hen (2002)
Resistance of α-synuclein null mice to the parkinsonian neurotoxin MPTPProceedings of the National Academy of Sciences of the United States of America, 99
Grant Anderson, A. Noorian, Georgia Taylor, M. Anitha, Douglas Bernhard, S. Srinivasan, J. Greene (2007)
Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson's diseaseExperimental Neurology, 207
Fornai (2005)
Parkinson-like syndrome induced by continuous MPTP infusion: Convergent roles of the ubiquitin-proteasome system and ?-synucleinProc. Natl. Acad. Sci. U.S.A., 102
E. Lauwers, Z. Debyser, J. Dorpe, B. Strooper, B. Nuttin, V. Baekelandt (2003)
Neuropathology and Neurodegeneration in Rodent Brain Induced by Lentiviral Vectormediated Overexpression of α‐SynucleinBrain Pathology, 13
R. Schwarting, Marco Sedelis, K. Hofele, G. Auburger, J. Huston (1999)
Strain-dependent recovery of open-field behavior and striatal dopamine deficiency in the mouse MPTP model of Parkinson’s diseaseNeurotoxicity Research, 1
Yang (2006)
Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by ParkinProc. Natl. Acad. Sci. U.S.A., 103
Jacqueline Burré, Manu Sharma, Theodoros Tsetsenis, V. Buchman, M. Etherton, T. Südhof (2010)
α-Synuclein Promotes SNARE-Complex Assembly in Vivo and in VitroScience, 329
Shane Grealish, B. Mattsson, Peter Draxler, A. Björklund (2010)
Characterisation of behavioural and neurodegenerative changes induced by intranigral 6‐hydroxydopamine lesions in a mouse model of Parkinson’s diseaseEuropean Journal of Neuroscience, 31
J. Cannon, Victor Tapias, Hye-Mee Na, Anthony Honick, R. Drolet, J. Greenamyre (2009)
A highly reproducible rotenone model of Parkinson's diseaseNeurobiology of Disease, 34
Manning-Bog (2002)
The herbicide paraquat causes up-regulation and aggregation of ?-synuclein in mice: Paraquat and ?-synucleinJ. Biol. Chem., 277
A. Manning-Boğ, A. McCormack, Jie Li, V. Uversky, A. Fink, D. Monte (2002)
The Herbicide Paraquat Causes Up-regulation and Aggregation of α-Synuclein in MiceThe Journal of Biological Chemistry, 277
B. Giasson, J. Duda, Shawn Quinn, Bin Zhang, J. Trojanowski, V. Lee (2002)
Neuronal α-Synucleinopathy with Severe Movement Disorder in Mice Expressing A53T Human α-SynucleinNeuron, 34
A. Hazell, Y. Itzhak, Huaping Liu, M. Norenberg (1997)
1‐Methyl‐4‐Phenyl‐1,2,3,6‐Tetrahydropyridine (MPTP) Decreases Glutamate Uptake in Cultured AstrocytesJournal of Neurochemistry, 68
Kitada (2007)
Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient miceProc. Natl. Acad. Sci. U.S.A., 104
Parkinson's disease is a neurodegenerative disorder characterized by the loss of neurons in specific regions of the nervous system, notably in the substantia nigra pars compacta and, in most cases, by the deposition of intraneuronal inclusions named Lewy bodies. These pathological alterations have profound effects on the brain function, leading to the progressive development of various symptoms, the most prominent being the impaired initiation of voluntary movements caused by the loss of dopamine signaling in the basal ganglia. Here, we provide an overview of the mouse models of Parkinson's disease, with the goal of guiding selection of the most appropriate model for studying the question at hand. Pharmacological approaches targeting dopamine signaling and toxins leading to selective degeneration of nigral neurons are used to validate symptomatic treatments that aim at restoring effective dopaminergic function for motor control. Alternative mouse models are based on genetic modifications that are meant to reproduce the inherited alterations associated with familial forms of Parkinson's disease. Although genetic models have most often failed to induce overt degeneration of nigral dopaminergic neurons, they provide essential tools to explore the multifactorial etiology of this complex neurodegenerative disorder. Curr. Protoc. Mouse Biol. 4:121‐139 © 2014 by John Wiley & Sons, Inc.
Current Protocols in Mouse Biology – Wiley
Published: Sep 1, 2014
Keywords: Parkinson's disease; mouse models of neurodegeneration; genetic factors; toxins
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.