Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Promoting Reversibility of Co‐Free Layered Cathodes by Al and Cation Vacancy

Promoting Reversibility of Co‐Free Layered Cathodes by Al and Cation Vacancy Li‐ion batteries adopting layered cathodes can effectively alleviate the range limitations of electric vehicles. Unfortunately the scarcity of Co inhibits massive deployment of layered cathodes. Eliminating Co from layered cathodes is necessary to make a breakthrough in global application of electric vehicles. However, Co‐free layered cathodes face challenges in delithiation/lithiation reversibility since Co plays a pivotal role in suppressing Li/Ni mixing. Many metals have been proposed to replace Co in layered cathodes, and sophisticated compositional designs always consider suppressing Li/Ni mixing as the top priority. Here, the authors show that Li/Ni mixing can be suppressed by Al and cation vacancies in different manners; however, irreversible capacities are prominently different given similar Li/Ni mixing. In‐situ X‐ray diffraction monitored potentiostatic‐intermittent‐titration measurements reveal that Al decreases the lattice strain between H2 and H3 phase by 13.6%, but Al has an adverse impact on structure reversibility. While Al and cation vacancies together not only significantly reduce the H2/H3 lattice strain by 78% but also greatly enhance structure reversibility. Furthermore, the first‐principles calculation shows that cation vacancies can remarkably reduce the Li migration energy barrier by an order of magnitude. Reversibility of the newly designed Co‐free cathode is significantly enhanced through the synergic effect of Al and cation vacancies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Promoting Reversibility of Co‐Free Layered Cathodes by Al and Cation Vacancy

Loading next page...
 
/lp/wiley/promoting-reversibility-of-co-free-layered-cathodes-by-al-and-cation-oOS1jBjt0d

References (137)

Publisher
Wiley
Copyright
© 2023 Wiley‐VCH GmbH
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.202204241
Publisher site
See Article on Publisher Site

Abstract

Li‐ion batteries adopting layered cathodes can effectively alleviate the range limitations of electric vehicles. Unfortunately the scarcity of Co inhibits massive deployment of layered cathodes. Eliminating Co from layered cathodes is necessary to make a breakthrough in global application of electric vehicles. However, Co‐free layered cathodes face challenges in delithiation/lithiation reversibility since Co plays a pivotal role in suppressing Li/Ni mixing. Many metals have been proposed to replace Co in layered cathodes, and sophisticated compositional designs always consider suppressing Li/Ni mixing as the top priority. Here, the authors show that Li/Ni mixing can be suppressed by Al and cation vacancies in different manners; however, irreversible capacities are prominently different given similar Li/Ni mixing. In‐situ X‐ray diffraction monitored potentiostatic‐intermittent‐titration measurements reveal that Al decreases the lattice strain between H2 and H3 phase by 13.6%, but Al has an adverse impact on structure reversibility. While Al and cation vacancies together not only significantly reduce the H2/H3 lattice strain by 78% but also greatly enhance structure reversibility. Furthermore, the first‐principles calculation shows that cation vacancies can remarkably reduce the Li migration energy barrier by an order of magnitude. Reversibility of the newly designed Co‐free cathode is significantly enhanced through the synergic effect of Al and cation vacancies.

Journal

Advanced Energy MaterialsWiley

Published: Mar 1, 2023

Keywords: Co‐free; layered cathodes; Li migration; phase transition; structural reversibility

There are no references for this article.