Access the full text.
Sign up today, get DeepDyve free for 14 days.
Yingying Xie, Xiaojing Wang, J. Silander (2015)
Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impactsProceedings of the National Academy of Sciences, 112
S. Piao, Jingyun Fang, Liming Zhou, P. Ciais, B. Zhu (2006)
Variations in satellite‐derived phenology in China's temperate vegetationGlobal Change Biology, 12
A. Elmore, Steven Guinn, B. Minsley, A. Richardson (2012)
Landscape controls on the timing of spring, autumn, and growing season length in mid‐Atlantic forestsGlobal Change Biology, 18
Xiaoyang Zhang, M. Friedl, C. Schaaf, A. Strahler, J. Hodges, F. Gao, B. Reed, A. Huete (2003)
Monitoring vegetation phenology using MODISRemote Sensing of Environment, 84
J. Peñuelas, T. Rutishauser, I. Filella (2009)
Phenology Feedbacks on Climate ChangeScience, 324
L. Liang, M. Schwartz, S. Fei (2011)
Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forestRemote Sensing of Environment, 115
Bruna Alberton, R. Torres, Thiago Silva, H. Rocha, M. Moura, L. Morellato (2019)
Leafing Patterns and Drivers across Seasonally Dry Tropical CommunitiesRemote. Sens., 11
Mengdi Guo, Chaoyang Wu, Jie Peng, Linlin Lu, Shihua Li (2021)
Identifying contributions of climatic and atmospheric changes to autumn phenology over mid-high latitudes of Northern HemisphereGlobal and Planetary Change, 197
(2014)
Strong contribution of a 2021 The Authors
(2011)
Validating satellite
K.M. Beurs, G.M. Henebry (2010)
Phenological research
Jean. Steinier, Yves. Termonia, Jules. Deltour (1964)
Smoothing and differentiation of data by simplified least square procedure.Analytical chemistry, 44 11
Xiang Chen, Dawei Wang, Jin Chen, Cong Wang, M. Shen (2018)
The mixed pixel effect in land surface phenology: A simulation studyRemote Sensing of Environment
Yongshuo Fu, S. Piao, N. Delpierre, F. Hao, H. Hänninen, Yongjie Liu, Wenchao Sun, I. Janssens, M. Campioli (2018)
Larger temperature response of autumn leaf senescence than spring leaf‐out phenologyGlobal Change Biology, 24
Linglin Zeng, B. Wardlow, D. Xiang, Shun Hu, Deren Li (2020)
A review of vegetation phenological metrics extraction using time-series, multispectral satellite dataRemote Sensing of Environment, 237
M.E. Jakubauskas, D.R. Legates, J.H. Kastens (2001)
Harmonic analysis of time‐series AVHRR NDVI data, 67
Q. Ge, Huanjiong Wang, T. Rutishauser, Junhu Dai (2015)
Phenological response to climate change in China: a meta‐analysisGlobal Change Biology, 21
J. Hermance (2007)
Stabilizing high‐order, non‐classical harmonic analysis of NDVI data for average annual models by damping model roughnessInternational Journal of Remote Sensing, 28
Q. Xin, Jing Li, Ziming Li, Yaoming Li, Xuewen Zhou (2020)
Evaluations and comparisons of rule-based and machine-learning-based methods to retrieve satellite-based vegetation phenology using MODIS and USA National Phenology Network dataInt. J. Appl. Earth Obs. Geoinformation, 93
Jie He, Kun Yang, Wenjun Tang, Hui Lu, J. Qin, Yingying Chen, Xin Li (2020)
The first high-resolution meteorological forcing dataset for land process studies over ChinaScientific Data, 7
(1979)
China's national phenological observational criterion
(2003)
Monitoring vegetation phenology using MODIS. Remote Sensing of Environment
K. Beurs, G. Henebry (2010)
Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology
(2014)
Net carbon uptake
Xiaoyang Zhang, Lingling Liu, D. Yan (2017)
Comparisons of global land surface seasonality and phenology derived from AVHRR, MODIS, and VIIRS dataJournal of Geophysical Research: Biogeosciences, 122
2020) A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sensing of Environment
(2010)
Evaluation of four remote
A. Donnelly, Lingling Liu, Xiaoyang Zhang, A. Wingler (2018)
Autumn leaf phenology: discrepancies between in situ observations and satellite data at urban and rural sitesInternational Journal of Remote Sensing, 39
Bailu Zhao, A. Donnelly, M. Schwartz (2020)
Evaluating autumn phenology derived from field observations, satellite data, and carbon flux measurements in a northern mixed forest, USAInternational Journal of Biometeorology, 64
R. Fensholt, A. Anyamba, S. Stisen, I. Sandholt, Edwin Pak, J. Small (2007)
Comparisons of compositing period length for vegetation index data from polar-orbiting and geostationary satellites for the cloud-prone region of West AfricaPhotogrammetric Engineering and Remote Sensing, 73
Shilong Ren, Xiaoqiu Chen, S. An (2016)
Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian GrasslandInternational Journal of Biometeorology, 61
Michael White, K. Beurs, K. Didan, D. Inouye, A. Richardson, O. Jensen, J. O'keefe, Gong Zhang, R. Nemani, W. Leeuwen, Jesslyn Brown, A. Wit, M. Schaepman, Xi Lin, M. Dettinger, A. Bailey, J. Kimball, M. Schwartz, D. Baldocchi, John Lee, W. Lauenroth (2009)
Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006Global Change Biology, 15
M. Jakubauskas, D. Legates, J. Kastens (2002)
Crop identification using harmonic analysis of time-series AVHRR NDVI dataComputers and Electronics in Agriculture, 37
Xiaoyang Zhang, M. Friedl, C. Schaaf (2006)
Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurementsJournal of Geophysical Research, 111
(1979)
China’s national phenological
Xiaoyang Zhang, Lingling Liu, Yan Liu, Senthilnath Jayavelu, Jianmin Wang, M. Moon, G. Henebry, M. Friedl, C. Schaaf (2018)
Generation and evaluation of the VIIRS land surface phenology productRemote Sensing of Environment
Amanda Gallinat, R. Primack, D. Wagner (2015)
Autumn, the neglected season in climate change research.Trends in ecology & evolution, 30 3
Guocheng Wang, Yao Huang, Yurong Wei, Wen Zhang, Tingting Li, Qing Zhang (2019)
Inner Mongolian grassland plant phenological changes and their climatic drivers.The Science of the total environment, 683
T. Keenan, J. Gray, M. Friedl, M. Toomey, G. Bohrer, D. Hollinger, J. Munger, J. O'keefe, H. Schmid, I. Wing, Bai Yang, A. Richardson (2014)
Net carbon uptake has increased through warming-induced changes in temperate forest phenologyNature Climate Change, 4
(2011)
Monitoring elevation variations
Irene Garonna, R. Jong, A. Wit, C. Mücher, B. Schmid, M. Schaepman (2014)
Strong contribution of autumn phenology to changes in satellite‐derived growing season length estimates across Europe (1982–2011)Global Change Biology, 20
G. Marcuzzi (1979)
The Deciduous Forest
(2019)
MCD12Q2 MODIS/Terra+ aqua land cover dynamics yearly L3 global 500 m SIN grid V006
G. Bao, Hugejiletu Jin, Siqin Tong, Jiquan Chen, Xiaojun Huang, Y. Bao, C. Shao, U. Mandakh, M. Chopping, L. Du (2021)
Autumn Phenology and Its Covariation with Climate, Spring Phenology and Annual Peak Growth on the Mongolian PlateauAgricultural and Forest Meteorology
D. Yan, Xiaoyang Zhang, S. Nagai, Yunyue Yu, T. Akitsu, K. Nasahara, R. Ide, T. Maeda (2019)
Evaluating land surface phenology from the Advanced Himawari Imager using observations from MODIS and the Phenological Eyes NetworkInt. J. Appl. Earth Obs. Geoinformation, 79
Sujong Jeong, D. Medvigy (2014)
Macroscale prediction of autumn leaf coloration throughout the continental United StatesGlobal Ecology and Biogeography, 23
(2006)
European phenological response to climate
E. Berra, R. Gaulton (2021)
Remote sensing of temperate and boreal forest phenology: A review of progress, challenges and opportunities in the intercomparison of in-situ and satellite phenological metricsForest Ecology and Management, 480
A. Menzel, T. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, Kerstin Alm-Kübler, P. Bissolli, O. Braslavská, A. Briede, F. Chmielewski, Z. Črepinšek, Y. Curnel, Å. Dahl, C. Defila, A. Donnelly, Yolanda Filella, K. Jatczak, F. Måge, A. Mestre, Ø. Nordli, J. Peñuelas, P. Pirinen, Viera Remisova, H. Scheifinger, M. Striz, A. Susnik, A. Vliet, F. Wielgolaski, S. Zach, A. Zust (2006)
European phenological response to climate change matches the warming patternGlobal Change Biology, 12
(2003)
Plant phenological observation dataset of the Chinese Ecosystem Research Network
A. Noormets (2009)
Phenology of Ecosystem Processes
Y. Ran, Xin Li, L. Lu (2010)
Evaluation of four remote sensing based land cover products over ChinaInternational Journal of Remote Sensing, 31
B. Reed, M. White, Jesslyn Brown (2009)
Remote Sensing Phenology
S. Klosterman, K. Hufkens, J. Gray, E. Melaas, O. Sonnentag, I. Lavine, L. Mitchell, R. Norman, M. Friedl, A. Richardson (2014)
Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imageryBiogeosciences, 11
(2017)
Assessing plant senescence
Santiago Belda, L. Pipia, Pablo Pallarés, J. Caicedo, E. Amin, Charlotte Grave, J. Verrelst (2020)
DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detectionEnvironmental modelling & software : with environment data news, 127
G. Hmimina, E. Dufrene, J. Pontailler, N. Delpierre, M. Aubinet, Blandine Caquet, A. Grandcourt, B. Burban, C. Flechard, A. Granier, P. Gross, B. Heinesch, B. Longdoz, C. Moureaux, J. Ourcival, S. Rambal, L. André, K. Soudani (2013)
Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurementsRemote Sensing of Environment, 132
(2014)
Macroscale prediction
D. Guyon, M. Guillot, Y. Vitasse, H. Cardot, O. Hagolle, S. Delzon, J. Wigneron (2011)
Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-seriesRemote Sensing of Environment, 115
(2017)
Plant phenological observation dataset of the Chinese Ecosystem Research Network (2003–2015)
Remote Sensing in Ecology and Conservation – Wiley
Published: Dec 1, 2021
Keywords: Autumn phenology; end of growing season dates; remote sensing; satellite‐based methods; vegetation index
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.