Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Amaral, C. Schumann, C. Nordahl (2008)
Neuroanatomy of autismTrends in Neurosciences, 31
S. Soni, J. Whittington, A. Holland, T. Webb, E. Maina, H. Boer, D. Clarke (2007)
The course and outcome of psychiatric illness in people with Prader-Willi syndrome: implications for management and treatment.Journal of intellectual disability research : JIDR, 51 Pt 1
Jocelyn Bischof, C. Stewart, R. Wevrick (2007)
Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome.Human molecular genetics, 16 22
P. Gaspar, O. Cases, L. Maroteaux (2003)
The developmental role of serotonin: news from mouse molecular geneticsNature Reviews Neuroscience, 4
I. García-Tornadú, M. Rubinstein, B. Gaylinn, D. Hill, E. Arany, M. Low, G. Díaz-Torga, D. Becu-Villalobos (2006)
GH in the dwarf dopaminergic D2 receptor knockout mouse: somatotrope population, GH release, and responsiveness to GH-releasing factors and somatostatin.The Journal of endocrinology, 190 3
R. Deacon (2006)
Digging and marble burying in mice: simple methods for in vivo identification of biological impactsNature Protocols, 1
S. Soni, J. Whittington, A. Holland, T. Webb, E. Maina, H. Boer, D. Clarke (2008)
The phenomenology and diagnosis of psychiatric illness in people with Prader–Willi syndromePsychological Medicine, 38
A. Krain, F. Castellanos (2006)
Brain development and ADHD.Clinical psychology review, 26 4
Akefeldt (2001)
Cerebrospinal fluid neuropeptide Y in Prader-Willi syndromeDev Med Child Neurol, 43
S. Hyman (2007)
Neuroscience: Obsessed with groomingNature, 448
J. Lerch, J. Carroll, A. Dorr, S. Spring, Alan Evans, M. Hayden, J. Sled, R. Henkelman (2008)
Cortical thickness measured from MRI in the YAC128 mouse model of Huntington's diseaseNeuroImage, 41
L. Miller, M. Angulo, D. Price, S. Taneja (2005)
MR of the pituitary in patients with Prader-Willi syndrome: Size determination and imaging findingsPediatric Radiology, 26
C. Hohmann, Ellen Walker, C. Boylan, M. Blue (2007)
Neonatal serotonin depletion alters behavioral responses to spatial change and noveltyBrain Research, 1139
K. Maruyama, M. Usami, T. Aizawa, K. Yoshikawa (1991)
A novel brain-specific mRNA encoding nuclear protein (necdin) expressed in neurally differentiated embryonal carcinoma cells.Biochemical and biophysical research communications, 178 1
David Andrieu, H. Meziane, Fabienne Marly, Corinne Angelats, P. Fernandez, F. Muscatelli (2006)
Sensory defects in Necdin deficient mice result from a loss of sensory neurons correlated within an increase of developmental programmed cell deathBMC Developmental Biology, 6
J. Crawley (2008)
Behavioral Phenotyping Strategies for Mutant MiceNeuron, 57
B. Nieman, A. Flenniken, S. Adamson, R. Henkelman, J. Sled (2006)
Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography.Physiological genomics, 24 2
D. Rogers, E. Fisher, S.D.M. Brown, J. Peters, A. Hunter, Joanne Martin (1997)
Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessmentMammalian Genome, 8
F. Ding, H. Li, Shengwen Zhang, N. Solomon, S. Camper, P. Cohen, U. Francke (2008)
SnoRNA Snord116 (Pwcr1/MBII-85) Deletion Causes Growth Deficiency and Hyperphagia in MicePLoS ONE, 3
S. Lee, S. Kozlov, L. Hernandez, S. Chamberlain, C. Brannan, C. Stewart, R. Wevrick (2000)
Expression and imprinting of MAGEL2 suggest a role in Prader-willi syndrome and the homologous murine imprinting phenotype.Human molecular genetics, 9 12
E. Plaen, O. Backer, D. Arnaud, B. Bonjean, P. Chomez, V. Martelange, P. Avner, P. Baldacci, C. Babinet, S. Hwang, B. Knowles, T. Boon (1999)
A new family of mouse genes homologous to the human MAGE genes.Genomics, 55 2
J. Crawley (2000)
What's Wrong With My Mouse?: Behavioral Phenotyping of Transgenic and Knockout Mice
A. Åkefeldt, R. Ekman, C. Gillberg, J. Månsson (1998)
Cerebrospinal fluid monoamines in Prader–Willi syndromeBiological Psychiatry, 44
M. Mattson, Stuart Maudsley, B. Martin (2004)
A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotoninAgeing Research Reviews, 3
L. Iughetti, L. Bosio, A. Corrias, L. Gargantini, L. Ragusa, C. Livieri, B. Predieri, P. Bruzzi, G. Caselli, G. Grugni (2008)
Pituitary height and neuroradiological alterations in patients with Prader-Labhart-Willi syndromeEuropean Journal of Pediatrics, 167
J. Tyszka, C. Readhead, Elaine Bearer, Elaine Bearer, R. Pautler, R. Pautler, R. Jacobs (2006)
Statistical diffusion tensor histology reveals regional dysmyelination effects in the shiverer mouse mutantNeuroImage, 29
L. Heisler, E. Jobst, G. Sutton, Ligang Zhou, E. Borók, Z. Thornton-Jones, Hong Liu, J. Zigman, N. Balthasar, Toshiro Kishi, Charlotte Lee, Carl Aschkenasi, Chen-Yu Zhang, Jia Yu, O. Boss, K. Mountjoy, P. Clifton, B. Lowell, J. Friedman, T. Horvath, A. Butler, J. Elmquist, M. Cowley (2006)
Serotonin Reciprocally Regulates Melanocortin Neurons to Modulate Food IntakeNeuron, 51
S. Cassidy, C. Morris (2002)
Behavioral phenotypes in genetic syndromes: genetic clues to human behavior.Advances in pediatrics, 49
I. Boccaccio, Heather Glatt-Deeley, F. Watrin, Nathalie Roëckel, M. Lalande, F. Muscatelli (1999)
The human MAGEL2 gene and its mouse homologue are paternally expressed and mapped to the Prader-Willi region.Human molecular genetics, 8 13
A. Dorr, J. Lerch, S. Spring, N. Kabani, R. Henkelman (2008)
High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J miceNeuroImage, 42
Thea Chibuk, Jocelyn Bischof, R. Wevrick (2001)
A necdin/MAGE-like gene in the chromosome 15 autism susceptibility region: expression, imprinting, and mapping of the human and mouse orthologuesBMC Genetics, 2
Syann Lee, C. Walker, R. Wevrick (2003)
Prader-Willi syndrome transcripts are expressed in phenotypically significant regions of the developing mouse brain.Gene expression patterns : GEP, 3 5
Jennifer Miller, A. Goldstone, Jessica Couch, J. Shuster, Guojun He, D. Driscoll, Yijun Liu, I. Schmalfuss (2008)
Pituitary abnormalities in Prader–Willi syndrome and early onset morbid obesityAmerican Journal of Medical Genetics Part A, 146A
L. Soleimani, J. Roder, J. Roder, J. Dennis, J. Dennis, T. Lipina (2008)
Beta N‐acetylglucosaminyltransferase V (Mgat5) deficiency reduces the depression‐like phenotype in miceGenes, 7
B. Skryabin, Leonid Gubar, Birte Seeger, Jana Pfeiffer, Sergej Handel, Thomas Robeck, E. Karpova, T. Rozhdestvensky, J. Brosius (2007)
Deletion of the MBII-85 snoRNA Gene Cluster in Mice Results in Postnatal Growth RetardationPLoS Genetics, 3
J. Crawley (2007)
What's Wrong With My Mouse?
D. Brandau, M. Theodoro, U. Garg, M. Butler (2008)
Follicle stimulating and leutinizing hormones, estradiol and testosterone in Prader–Willi syndromeAmerican Journal of Medical Genetics Part A, 146A
N. Kovacevic, J. Henderson, E. Chan, N. Lifshitz, J. Bishop, Alan Evans, R. Henkelman, X. Chen (2005)
A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability.Cerebral cortex, 15 5
Risa Takazaki, I. Nishimura, K. Yoshikawa (2002)
Necdin is required for terminal differentiation and survival of primary dorsal root ganglion neurons.Experimental cell research, 277 2
A. Åkefeldt, J. Månsson (1998)
Is monoamine oxidase activity elevated in Prader-Willi syndrome?European Child & Adolescent Psychiatry, 7
D. Collins, P. Neelin, T. Peters, A. Evans (1994)
Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach SpaceJournal of Computer Assisted Tomography, 18
A. Kalueff, A. Kalueff, J. Aldridge, J. LaPorte, D. Murphy, P. Tuohimaa (2007)
Analyzing grooming microstructure in neurobehavioral experimentsNature Protocols, 2
E. Plaen, C. Traversari, J. Gaforio, J. Szikora, C. Smet, F. Brasseur, P. Bruggen, B. Lethé, C. Lurquin, P. Chomez, O. Backer, T. Boon, K. Arden, W. Cavenee, R. Brasseur (2005)
Structure, chromosomal localization, and expression of 12 genes of the MAGE familyImmunogenetics, 40
B. Nieman, J. Lerch, N. Bock, X. Chen, J. Sled, R. Henkelman (2007)
Mouse behavioral mutants have neuroimaging abnormalitiesHuman Brain Mapping, 28
Jun Ren, Syann Lee, S. Pagliardini, M. Gérard, C. Stewart, J. Greer, R. Wevrick (2003)
Absence of Ndn, Encoding the Prader-Willi Syndrome-Deleted Gene necdin, Results in Congenital Deficiency of Central Respiratory Drive in Neonatal MiceThe Journal of Neuroscience, 23
F. Muscatelli, D. Abrous, A. Massacrier, I. Boccaccio, M. Moal, Pierrre Cau, H. Cremer (2000)
Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome.Human molecular genetics, 9 20
M. Gunay‐Aygun, S. Schwartz, S. Heeger, M. O'riordan, S. Cassidy (2001)
The changing purpose of Prader-Willi syndrome clinical diagnostic criteria and proposed revised criteria.Pediatrics, 108 5
U. Eiholzer, Barbara Whitman (2004)
A Comprehensive Team Approach to the Management of Patients with Prader-Willi SyndromeJournal of Pediatric Endocrinology and Metabolism, 17
J. Lerch, J. Carroll, S. Spring, L. Bertram, C. Schwab, M. Hayden, R. Henkelman (2008)
Automated deformation analysis in the YAC128 Huntington disease mouse modelNeuroImage, 39
P. Chomez, O. Backer, M. Bertrand, E. Plaen, T. Boon, S. Lucas (2001)
An overview of the MAGE gene family with the identification of all human members of the family.Cancer research, 61 14
W. Kaye, G. Frank, U. Bailer, S. Henry, C. Meltzer, J. Price, C. Mathis, A. Wagner (2005)
Serotonin alterations in anorexia and bulimia nervosa: New insights from imaging studiesPhysiology & Behavior, 85
Rebecca Mercer, R. Wevrick (2009)
Loss of Magel2, a Candidate Gene for Features of Prader-Willi Syndrome, Impairs Reproductive Function in MicePLoS ONE, 4
Alysa Tennese, Christopher Gee, R. Wevrick (2008)
Loss of the Prader‐Willi syndrome protein necdin causes defective migration, axonal outgrowth, and survival of embryonic sympathetic neuronsDevelopmental Dynamics, 237
N. Haren, S. Bakker, R. Kahn (2008)
Genes and structural brain imaging in schizophreniaCurrent Opinion in Psychiatry, 21
A. Åkefeldt, R. Ekman, J. Månsson (2001)
‘Cerebrospinal fluid neuropeptide Y in Prader‐Willi syndrome’Developmental Medicine & Child Neurology, 43
S. Clapcote, Noah Lazar, Allison Bechard, J. Roder (2005)
Effects of the rd1 Mutation and Host Strain on Hippocampal Learning in MiceBehavior Genetics, 35
S. Spring, J. Lerch, R. Henkelman (2007)
Sexual dimorphism revealed in the structure of the mouse brain using three-dimensional magnetic resonance imagingNeuroImage, 35
B. Horsthemke, K. Buiting (2006)
Imprinting defects on human chromosome 15Cytogenetic and Genome Research, 113
L. Tecott, E. Nestler (2004)
Neurobehavioral assessment in the information ageNature Neuroscience, 7
S. Kozlov, J. Bogenpohl, Maureen Howell, R. Wevrick, S. Panda, J. Hogenesch, L. Muglia, R. Gelder, E. Herzog, C. Stewart (2007)
The imprinted gene Magel2 regulates normal circadian outputNature Genetics, 39
R. Henkelman, J. Dazai, N. Lifshitz, B. Nieman, S. Tsatskis, J. Lerch, J. Bishop, S. Kale, J. Sled, X. Chen (2010)
High Throughput Microimaging of the Mouse Brain
B. Schüle, M. Albalwi, Emma Northrop, D. Francis, Margaret Rowell, H. Slater, R. Gardner, U. Francke (2005)
Molecular breakpoint cloning and gene expression studies of a novel translocation t(4;15)(q27;q11.2) associated with Prader-Willi syndromeBMC Medical Genetics, 6
R. Moore, J. Speh, R. Leak (2002)
Suprachiasmatic nucleus organizationCell and Tissue Research, 309
Kenichi Yamada, H. Matsuzawa, M. Uchiyama, I. Kwee, T. Nakada (2006)
Brain Developmental Abnormalities in Prader-Willi Syndrome Detected by Diffusion Tensor ImagingPediatrics, 118
A. Toga, P. Thompson, E. Sowell (2006)
Mapping brain maturationTrends in Neurosciences, 29
A. Vogels, M. Hert, M. Descheemaeker, V. Govers, K. Devriendt, E. Legius, P. Prinzie, J. Fryns (2004)
Psychotic disorders in Prader–Willi syndromeAmerican Journal of Medical Genetics Part A, 127A
C. Genovese, N. Lazar, Thomas Nichols (2002)
Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery RateNeuroImage, 15
P. Barker, Amir Salehi (2002)
The MAGE proteins: Emerging roles in cell cycle progression, apoptosis, and neurogenetic diseaseJournal of Neuroscience Research, 67
O. Backer, A. Verheyden, B. Martin, D. Godelaine, E. Plaen, R. Brasseur, P. Avner, T. Boon (1995)
Structure, chromosomal location, and expression pattern of three mouse genes homologous to the human MAGE genes.Genomics, 28 1
R. Hammond, Laura Tull, R. Stackman (2004)
On the delay-dependent involvement of the hippocampus in object recognition memoryNeurobiology of Learning and Memory, 82
M. Parent, David Bush, G. Rauw, Sangeeta Master, F. Vaccarino, G. Baker (2001)
Analysis of amino acids and catecholamines, 5-hydroxytryptamine and their metabolites in brain areas in the rat using in vivo microdialysis.Methods, 23 1
S. Pagliardini, Jun Ren, R. Wevrick, J. Greer (2005)
Developmental abnormalities of neuronal structure and function in prenatal mice lacking the prader-willi syndrome gene necdin.The American journal of pathology, 167 1
T. Sahoo, D. Gaudio, J. German, M. Shinawi, S. Peters, R. Person, Adolfo Garnica, S. Cheung, A. Beaudet (2008)
Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA clusterNature Genetics, 40
Amir Salehi, Philippe Roux, C. Kubu, C. Zeindler, A. Bhakar, L. Tannis, J. Verdi, P. Barker (2000)
NRAGE, A Novel MAGE Protein, Interacts with the p75 Neurotrophin Receptor and Facilitates Nerve Growth Factor–Dependent ApoptosisNeuron, 27
M. Tcherpakov, F. Bronfman, S. Conticello, Anna Vaskovsky, Z. Levy, M. Niinobe, K. Yoshikawa, E. Arenas, M. Fainzilber (2002)
The p75 Neurotrophin Receptor Interacts with Multiple MAGE Proteins*The Journal of Biological Chemistry, 277
J. Crabbe, R. Morris (2004)
Festina lente: Late-night thoughts on high-throughput screening of mouse behaviorNature Neuroscience, 7
Jennifer Miller, Jessica Couch, I. Schmalfuss, Guojun He, Yijun Liu, D. Driscoll (2007)
Intracranial abnormalities detected by three‐dimensional magnetic resonance imaging in Prader–Willi syndromeAmerican Journal of Medical Genetics Part A, 143A
K. Kuwako, H. Taniura, K. Yoshikawa (2004)
Necdin-related MAGE Proteins Differentially Interact with the E2F1 Transcription Factor and the p75 Neurotrophin Receptor*Journal of Biological Chemistry, 279
S. Clapcote, T. Lipina, J. Millar, S. Mackie, S. Christie, Fumiaki Ogawa, J. Lerch, Keith Trimble, M. Uchiyama, Y. Sakuraba, H. Kaneda, T. Shiroishi, M. Houslay, R. Henkelman, J. Sled, Y. Gondo, D. Porteous, J. Roder, J. Roder (2007)
Behavioral Phenotypes of Disc1 Missense Mutations in MiceNeuron, 54
E. Lein, M. Hawrylycz, Nancy Ao, M. Ayres, Amy Bensinger, Amy Bernard, A. Boe, M. Boguski, Kevin Brockway, Emi Byrnes, Lin Chen, Li Chen, Tsuey-Ming Chen, Mei Chin, Jimmy Chong, Brian Crook, Aneta Czaplinska, Chinh Dang, S. Datta, N. Dee, Aimee Desaki, Tsega Desta, Ellen Diep, Tim Dolbeare, M. Donelan, Hong-wei Dong, J. Dougherty, Ben Duncan, Amanda Ebbert, G. Eichele, Lili Estin, C. Faber, B. Facer, Rick Fields, S. Fischer, Tim Fliss, C. Frensley, Sabrina Gates, Katie Glattfelder, K. Halverson, Matthew Hart, J. Hohmann, Maureen Howell, Darren Jeung, Rebecca Johnson, Patrick Karr, Reena Kawal, Jolene Kidney, Rachel Knapik, C. Kuan, J. Lake, A. Laramee, Kirk Larsen, C. Lau, Tracy Lemon, Agnes Liang, Y. Liu, Lon Luong, Jesse Michaels, J. Morgan, Rebecca Morgan, M. Mortrud, Nerick Mosqueda, Lydia Ng, Randy Ng, Geralyn Orta, C. Overly, Tu Pak, Sheana Parry, S. Pathak, Owen Pearson, R. Puchalski, Z. Riley, Hannah Rockett, S. Rowland, J. Royall, M. Ruiz, N. Sarno, K. Schaffnit, N. Shapovalova, Taz Sivisay, C. Slaughterbeck, Simon Smith, Kimberly Smith, Bryan Smith, Andrew Sodt, Nick Stewart, K. Stumpf, S. Sunkin, Madhavi Sutram, Angelene Tam, C. Teemer, C. Thaller, C. Thompson, Lee Varnam, A. Visel, Ray Whitlock, Paul Wohnoutka, Crissa Wolkey, V. Wong, M. Wood, M. Yaylaoglu, R. Young, Brian Youngstrom, Xuefeng Yuan, Bin Zhang, T. Zwingman, Allan Jones (2007)
Genome-wide atlas of gene expression in the adult mouse brainNature, 445
A. Goldstone (2004)
Prader-Willi syndrome: advances in genetics, pathophysiology and treatmentTrends in Endocrinology & Metabolism, 15
Syann Lee, C. Walker, B. Karten, S. Kuny, Alysa Tennese, M. O’Neill, R. Wevrick (2005)
Essential role for the Prader-Willi syndrome protein necdin in axonal outgrowth.Human molecular genetics, 14 5
Christian Gaser, H. Volz, S. Kiebel, S. Riehemann, H. Sauer (1999)
Detecting Structural Changes in Whole Brain Based on Nonlinear Deformations—Application to Schizophrenia ResearchNeuroImage, 10
Magel2 belongs to the MAGE/necdin family of proteins, which have roles in cell cycle, differentiation, and apoptosis. The Magel2 gene is expressed in various brain regions, most notably the hypothalamus. Mice with a targeted deletion of Magel2 display hypoactivity, blunted circadian rhythm, decreased fertility, and increased adiposity. The human ortholog, MAGEL2, is one of a set of paternally expressed, imprinted genes inactivated in most cases of Prader–Willi syndrome, a complex neurodevelopmental disorder. To explore the role of Magel2, brain morphology, brain neurochemistry, and behavior were measured in Magel2‐null mice. Brain volume was reduced in specific regions, particularly in the parieto‐temporal lobe of the cerebral cortex, the amygdala, the hippocampus, and the nucleus accumbens, as measured by quantitative magnetic resonance imaging. Abnormal neurochemistry was detected in brain samples from adult mice, consisting of decreased serotonin and 5‐hydroxyindoleacetic acid in the cortex and the hypothalamus, and decreased dopamine in the hypothalamus. Magel2‐null mice displayed relatively normal motor and learning abilities, but exhibited abnormal behavior in novel environments. This study lends support to the important role of the circadian rhythm output gene Magel2 in brain structure and behavior. © 2009 Wiley‐Liss, Inc.
American Journal of Medical Genetics part B – Wiley
Published: Dec 5, 2009
Keywords: Prader–Willi syndrome; anxiety; magnetic resonance imaging; circadian rhythm; imprinting
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.