Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Relations of sand trapping efficiency and migration speed of transverse dunes to wind velocity

Relations of sand trapping efficiency and migration speed of transverse dunes to wind velocity A self‐consistent model which describes transverse dune migration in equilibrium is introduced. It shows that an equilibrium expression for dune migration speed (c d) must take into account sand trapping efficiency (T E), and that T E is strongly related to the wind speedup over the windward surface. An expression for sand trapping efficiency (T E) is analytically derived from a microscale analysis of sand grain deposition on the slip face. Sand trapping efficiency (T E) is mainly determined by shear velocity on a level surface (u*(−∞)), and rapidly decreases as u*(−∞) increases. For each dune height (H), dune migration speed (c d) first increases, and then decreases monotonically after reaching the maximum, as the shear velocity on a level surface (u*(−∞)) increases. Dune migration speed (c d) is not inversely proportional to dune height (H). For low dunes, small sand trapping efficiency (T E) suppresses c d, whereas for high dunes, wind speedup and large T E resist the decrease of c d. Some field data show the same tendency. The dune‐to‐plane‐bed transition observed in subaqueous and venusian bedforms could be associated with the decrease of sand trapping efficiency (T E). Copyright © 2000 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Earth Surface Processes and Landforms Wiley

Relations of sand trapping efficiency and migration speed of transverse dunes to wind velocity

Loading next page...
 
/lp/wiley/relations-of-sand-trapping-efficiency-and-migration-speed-of-v7T19sLutx

References (18)

Publisher
Wiley
Copyright
Copyright © 2000 Wiley Subscription Services
ISSN
0197-9337
eISSN
1096-9837
DOI
10.1002/1096-9837(200009)25:10<1069::AID-ESP117>3.0.CO;2-D
Publisher site
See Article on Publisher Site

Abstract

A self‐consistent model which describes transverse dune migration in equilibrium is introduced. It shows that an equilibrium expression for dune migration speed (c d) must take into account sand trapping efficiency (T E), and that T E is strongly related to the wind speedup over the windward surface. An expression for sand trapping efficiency (T E) is analytically derived from a microscale analysis of sand grain deposition on the slip face. Sand trapping efficiency (T E) is mainly determined by shear velocity on a level surface (u*(−∞)), and rapidly decreases as u*(−∞) increases. For each dune height (H), dune migration speed (c d) first increases, and then decreases monotonically after reaching the maximum, as the shear velocity on a level surface (u*(−∞)) increases. Dune migration speed (c d) is not inversely proportional to dune height (H). For low dunes, small sand trapping efficiency (T E) suppresses c d, whereas for high dunes, wind speedup and large T E resist the decrease of c d. Some field data show the same tendency. The dune‐to‐plane‐bed transition observed in subaqueous and venusian bedforms could be associated with the decrease of sand trapping efficiency (T E). Copyright © 2000 John Wiley & Sons, Ltd.

Journal

Earth Surface Processes and LandformsWiley

Published: Jan 1, 2000

Keywords: ; ; ; ;

There are no references for this article.