Access the full text.
Sign up today, get DeepDyve free for 14 days.
I. S. Evans (1980)
?An integrated system of terrain analysis and slope mapping?, 36
B. Kong, Huan Yu, Rongxiang Du, Qing Wang (2019)
Quantitative Estimation of Biomass of Alpine Grasslands Using Hyperspectral Remote Sensing☆Rangeland Ecology and Management, 72
J. C. White, N. C. Coops, M. A. Wulder, M. Vastaranta, T. Hilker, P. Tompalski (2016)
Remote sensing technologies for enhancing forest inventories: a review remote sensing technologies for enhancing forest inventories: a review, 42
M. Vilà, J. Espinar, M. Hejda, P. Hulme, V. Jarošı́k, J. Maron, J. Pergl, U. Schaffner, Yan Sun, P. Pyšek (2011)
Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems.Ecology letters, 14 7
Frank Hensgen, M. Wachendorf (2016)
The Effect of the Invasive Plant Species Lupinus polyphyllus Lindl. on Energy Recovery Parameters of Semi-Natural Grassland BiomassSustainability, 8
Jibo Yue, Guijun Yang, Changchun Li, Zhenhai Li, Yanjie Wang, Haikuan Feng, Bo Xu (2017)
Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved ModelsRemote. Sens., 9
(2019)
2019. R: A language and environment
M. Kuhn (2008)
Building Predictive Models in R Using the caret PackageJournal of Statistical Software, 28
(2019)
R: A language and environment for statistical computing
(1980)
An integrated system of terrain analysis and slope mapping'. Zeitschrift für Geomorphologie
(2011)
Ecological impacts of invasive alien
Utsav Gewali, S. Monteiro, E. Saber (2018)
Machine learning based hyperspectral image analysis: A surveyArXiv, abs/1802.08701
M. Weiss, F. Jacob, Gregory Duveiller (2020)
Remote sensing for agricultural applications: A meta-reviewRemote Sensing of Environment, 236
I. Evans (1979)
Statistical Characterization of Altitude Matrices by Computer. Report 6. An Integrated System of Terrain Analysis and Slope Mapping.
F. Bello, S. Lavorel, S. Díaz, R. Harrington, J. Cornelissen, R. Bardgett, M. Berg, P. Cipriotti, C. Feld, D. Hering, P. Silva, S. Potts, L. Sandin, J. Sousa, J. Storkey, D. Wardle, P. Harrison (2010)
Towards an assessment of multiple ecosystem processes and services via functional traitsBiodiversity and Conservation, 19
(2019)
raster: geographic geographic data analysis and modeling
(2019)
Estimating biomass in temperate grassland
J. Clevers, L. Kooistra, M. Schaepman (2008)
Using spectral information from the NIR water absorption features for the retrieval of canopy water contentInt. J. Appl. Earth Obs. Geoinformation, 10
Thomas Möckel, Hanieh Safari, B. Reddersen, T. Fricke, M. Wachendorf (2017)
Fusion of Ultrasonic and Spectral Sensor Data for Improving the Estimation of Biomass in Grasslands with Heterogeneous Sward StructureRemote. Sens., 9
R. Genuer, Jean-Michel Poggi, Christine Tuleau-Malot (2014)
Variable Selection Using Random Forests The VSURF R package
J. Rouse, R. Haas, J. Schell, D. Deering (1973)
Monitoring vegetation systems in the great plains with ERTS, 1
Damian Schulze-Brüninghoff, Frank Hensgen, M. Wachendorf, T. Astor (2019)
Methods for LiDAR-based estimation of extensive grassland biomassComput. Electron. Agric., 156
Esther Grüner, T. Astor, M. Wachendorf (2019)
Biomass Prediction of Heterogeneous Temperate Grasslands Using an SfM Approach Based on UAV ImagingAgronomy
L. Wallace, Samuel Hillman, K. Reinke, B. Hally (2017)
Non‐destructive estimation of above‐ground surface and near‐surface biomass using 3D terrestrial remote sensing techniquesMethods in Ecology and Evolution, 8
(2014)
Ecological a 2020 The Authors
(2018)
ALEPlot: Accumulated Local Effects (ALE) Plots and Partial Dependence (PD) Plots
Jinru Xue, Baofeng Su (2017)
Significant Remote Sensing Vegetation Indices: A Review of Developments and ApplicationsJ. Sensors, 2017
A. Swatantran, R. Dubayah, D. Roberts, M. Hofton, J. Blair (2011)
Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusionRemote Sensing of Environment, 115
A. Otte, P. Maul (2005)
Verbreitungsschwerpunkte und strukturelle Einnischung der Stauden-Lupine (Lupinus polyphyllus Lindl.) in Bergwiesen der RhönTuexenia
(2016)
Remote sensing technologies
H. Smit, M. Metzger, F. Ewert (2008)
Spatial distribution of grassland productivity and land use in EuropeAgricultural Systems, 98
Harald Volz (2006)
Ursachen und Auswirkungen der Ausbreitung von Lupinus polyphyllus Lindl. im Bergwiesenökosystem der Rhön und Maßnahmen zu seiner Regulierung
I. Florinsky (1998)
Accuracy of Local Topographic Variables Derived from Digital Elevation ModelsInt. J. Geogr. Inf. Sci., 12
J. White, N. Coops, M. Wulder, M. Vastaranta, T. Hilker, P. Tompalski (2016)
Remote Sensing Technologies for Enhancing Forest Inventories: A ReviewCanadian Journal of Remote Sensing, 42
(2019)
Rangeland ecology & management quantitative estimation of biomass of alpine grasslands using hyperspectral remote sensing
Le Sun, Zenbin Wu, Jianjun Liu, Liang Xiao, Zhihui Wei (2015)
Supervised Spectral–Spatial Hyperspectral Image Classification With Weighted Markov Random FieldsIEEE Transactions on Geoscience and Remote Sensing, 53
(2019)
raster: geographic geographic data analysis and modeling. R package version 2.8-19
J. Wijesingha, T. Astor, Damian Schulze-Brüninghoff, M. Wachendorf (2020)
Mapping Invasive Lupinus polyphyllus Lindl. in Semi-natural Grasslands Using Object-Based Image Analysis of UAV-borne ImagesPFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88
A. Swatantran, R. Dubayah, D. Roberts, M. Hofton, J. B. Blair (2011)
Remote Sensing of Environment Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion, 115
L. Breiman (1996)
OUT-OF-BAG ESTIMATION
(2018)
ALEPlot: Accumulated Local Effects (ALE
Cheng Wang, S. Nie, X. Xi, Shezhou Luo, Xiaofeng Sun (2016)
Estimating the Biomass of Maize with Hyperspectral and LiDAR DataRemote. Sens., 9
Fugui Wang, E. D’Sa (2009)
Potential of MODIS EVI in Identifying Hurricane Disturbance to Coastal Vegetation in the Northern Gulf of MexicoRemote. Sens., 2
N. Silleos, T. Alexandridis, I. Gitas, K. Perakis (2006)
Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 YearsGeocarto International, 21
U. Lussem, A. Bolten, J. Menne, M. Gnyp, J. Schellberg, G. Bareth (2019)
Estimating biomass in temperate grassland with high resolution canopy surface models from UAV-based RGB images and vegetation indicesJournal of Applied Remote Sensing, 13
A. Valtonen, Juha Jantunen, K. Saarinen (2006)
Flora and lepidoptera fauna adversely affected by invasive Lupinus polyphyllus along road vergesBiological Conservation, 133
J. Wijesingha, Thomas Möckel, Frank Hensgen, M. Wachendorf (2019)
Evaluation of 3D point cloud-based models for the prediction of grassland biomassInt. J. Appl. Earth Obs. Geoinformation, 78
M. Wachendorf, T. Fricke, Thomas Möckel (2018)
Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslandsGrass and Forage Science, 73
E. Hiltbrunner, R. Aerts, Tobias Bühlmann, K. Huss-Danell, B. Magnússon, D. Myrold, S. Reed, B. Sigurdsson, C. Körner (2014)
Ecological consequences of the expansion of N2-fixing plants in cold biomesOecologia, 176
L. Breiman (2001)
Random ForestsMachine Learning, 45
(2014)
VoxR : metrics extraction of trees from T - LiDAR data
S. Karunaratne, A. Thomson, E. Morse-McNabb, J. Wijesingha, Dani Stayches, Amy Copland, J. Jacobs (2020)
The Fusion of Spectral and Structural Datasets Derived from an Airborne Multispectral Sensor for Estimation of Pasture Dry Matter Yield at Paddock Scale with TimeRemote. Sens., 12
S. Cooper, D. Roy, C. Schaaf, I. Paynter (2017)
Examination of the Potential of Terrestrial Laser Scanning and Structure-from-Motion Photogrammetry for Rapid Nondestructive Field Measurement of Grass BiomassRemote. Sens., 9
D. Apley, Jingyu Zhu (2016)
Visualizing the effects of predictor variables in black box supervised learning modelsJournal of the Royal Statistical Society: Series B (Statistical Methodology), 82
(2017)
Significant remote sensing vegetation
(1961)
Die Genzentren der Gattung Lupinus in der neuen Welt und ihre Bedeutung für die Züchtung
J. G. P. W. Clevers, L. Kooistra, M. E. Schaepman (2008)
International Journal of Applied Earth Observation and Geoinformation Using spectral information from the NIR water absorption features for the retrieval of canopy water content, 10
(2019)
VSURF: Variable Selection Using Random Forests
Iftikhar Ali, F. Cawkwell, E. Dwyer, S. Green (2017)
Modeling Managed Grassland Biomass Estimation by Using Multitemporal Remote Sensing Data—A Machine Learning ApproachIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10
Huifang Zhang, Yi Sun, Li-Der Chang, Yu Qin, Jianjun Chen, Yan Qin, Jiaxing Du, S. Yi, Yingli Wang (2018)
Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial VehicleRemote. Sens., 10
M. Weiss, F. Jacob, G. Duveiller (2020)
Remote Sensing of Environment Remote sensing for agricultural applications: a meta?review, 236
(1942)
Beiträge zur Entwicklung der Kulturlandschaft der zentralen Rhön vom dreißigjährigen Krieg bis 1933
(2003)
Ursachen und Auswirkungen der Ausbreitung
Bin Zou, Jingwen Chen, L. Zhai, Xin Fang, Zhong Zheng (2016)
Satellite Based Mapping of Ground PM2.5 Concentration Using Generalized Additive ModelingRemote. Sens., 9
Remote Sensing in Ecology and Conservation – Wiley
Published: Jun 1, 2021
Keywords: ; ; ; ;
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.