Access the full text.
Sign up today, get DeepDyve free for 14 days.
Field‐grown vines of cv. Sultana on either their own roots or grafted to a range of rootstocks, were drip‐irrigated at one of three salinity levels (0.40, 1.75 and 3.50 dS/m) over a five year period. Rootstocks were Ramsey, 1103 Paulsen, J17‐69 and 4 hybrids (designated R1, R2, R3 and R4) derived from parentage involving Vitis champini, V. berlandieri and V. vinifera. Grape juice total soluble solids, titratable acidity and pH were measured at harvest, while colour of dried fruit was measured before and after processing and again after six months storage. Damage index (an indicator of skin damage) was measured post‐processing; sugar crystal formation in dried grapes and dried grape compaction were measured post‐storage. There was a strong salinity x rootstock interaction for grape juice soluble solids concentration, soluble solids yield (the product of soluble solids concentration and fruit yield) and pH, but not for titratable acidity when analysed on the basis of 5 year means. Small increases (< 5%) in juice soluble solids concentration were recorded at medium salinity (1.75 dS/m) for the low vigour genotypes, Sultana on own‐roots and on J17‐69 rootstock, based on the 5 year means and Fisher's protected (interaction) LSDs. Moderate increases (< 10%) also occurred in years of low crop load e.g. 1993 at high salinity for the high vigour rootstock R2 and in 1995 at medium salinity for Sultana on own roots and at high salinity for Sultana on R1 rootstock. By contrast, decreases in soluble solids concentration occurred with increasing salinity for the high vigour rootstocks (Ramsey, 1103 Paulsen and R2) in years of high crop load e.g. 1992. Small (< 2%) increases in grape juice pH were recorded at high salinity for Sultana on R3 rootstock and moderate increases (< 7%) in grape juice titratable acidity were recorded at high salinity for Sultana on own roots and Sultana on J17‐69, R1, R2 and R4 rootstocks. Dried grapes from all treatments achieved a light amber colour (quality grade termed 5 crown light) and were generally of high quality. Sultanas from own‐rooted grapevines were redder (higher ‘a‐value’) than sultanas from 1103 Paulsen and Ramsey when assessed as unprocessed fruit, after processing (both years) and after 6 weeks storage. While soluble solids yields per vine were 23–31% lower at high salinity for Sultana on own roots and on R1, R3 and R4 rootstocks, they were unaffected by high salinity for Ramsey, 1103 Paulsen and R2 rootstocks. Moreover, soluble solids yields for Sultana on Ramsey, 1103 Paulsen and R2 rootstocks were 1.4 to 2.5‐fold higher than for Sultana on the other rootstocks at high salinity. This study has shown that over a 5 year period rootstocks such as Ramsey, 1103 Paulsen and R2 grafted with Sultana were tolerant of salinity, producing dried grapes of generally high quality.
Australian Journal of Grape and Wine Research – Wiley
Published: Oct 1, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.