Access the full text.
Sign up today, get DeepDyve free for 14 days.
N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, Z. Leghtas, B. Vlastakis, Yehan Liu, L. Frunzio, S. Girvin, Liang Jiang, M. Mirrahimi, M. Mirrahimi, M. Devoret, R. Schoelkopf (2016)
Extending the lifetime of a quantum bit with error correction in superconducting circuitsNature, 536
Zelin Zhang, Ping Xu, Zhen‐Biao Yang (2021)
Tracking quantum state evolution by the Berry curvature with a two-level systemThe European Physical Journal Plus, 136
Schirber M. (2016)
116Physics, 9
Chen X. (2012)
1604Science, 338
V. Gritsev, A. Polkovnikov (2011)
Dynamical quantum Hall effect in the parameter spaceProceedings of the National Academy of Sciences, 109
(1996)
A Mathematician and His Mathematical Work, World Scientific, Singapore
X. Wen (2004)
Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons
A. Wallraff, D. Schuster, A. Blais, L. Frunzio, Ren-Shou Huang, Ren-Shou Huang, J. Majer, Shiu Kumar, S. Girvin, R. Schoelkopf (2004)
Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamicsNature, 431
M. A. Nielsen, I. L. Chuang (2010)
Quantum Computation and Quantum Information: 10th Anniversary Edition
Zhen‐Biao Yang, Pei-Rong Han, Xinjie Huang, W. Ning, Hekang Li, Kai Xu, D. Zheng, H. Fan, Shi-Biao Zheng (2019)
Experimental demonstration of entanglement-enabled universal quantum cloning in a circuitnpj Quantum Information, 7
S.‐S. Chern (1996)
A Mathematician and His Mathematical Work
Jim Law (2001)
Quantum computation and quantum informationACM SIGSOFT Softw. Eng. Notes, 26
K. Klitzing (2017)
Quantum Hall Effect: Discovery and ApplicationAnnual Review of Condensed Matter Physics, 8
Klitzing K. (2017)
13Annu. Rev. Condens. Matter Phys., 8
A. Grimm, N. Frattini, S. Puri, S. Mundhada, S. Touzard, M. Mirrahimi, S. Girvin, Shyam Shankar, Shyam Shankar, M. Devoret (2020)
Stabilization and operation of a Kerr-cat qubitNature, 584
A. Serafini (2023)
Quantum Continuous Variables
(2017)
Continuous Variables, Taylor and Francis Group, Oxfordshire 2017
S. Puri, S. Boutin, A. Blais (2016)
Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon drivingnpj Quantum Information, 3
U. Andersen, Jonas Neergaard-Nielsen, P. Loock, A. Furusawa (2015)
Hybrid discrete- and continuous-variable quantum informationNature Physics, 11
Chern S.‐S. (1996)
132
Luyan Sun, Luyan Sun, A. Petrenko, Z. Leghtas, B. Vlastakis, G. Kirchmair, G. Kirchmair, K. Sliwa, A. Narla, M. Hatridge, Shyam Shankar, J. Blumoff, L. Frunzio, M. Mirrahimi, M. Mirrahimi, M. Devoret, R. Schoelkopf (2013)
Tracking photon jumps with repeated quantum non-demolition parity measurementsNature, 511
B. Bernevig (2013)
Topological Insulators and Topological Superconductors
M. Fisher (2005)
Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and ElectronsPhysics Today, 58
Lin Yin, Jianjun Li, Wenchao Zhai, Maopeng Xia, Youbo Hu, Xiaobing Zheng (2021)
Analysis of the Spatial Properties of Correlated Photon in Collinear Phase-MatchingPhotonics
P. Z. Crispin Gardiner (2000)
Quantum Noise
Xie Chen, Z. Gu, Zhengxin Liu, X. Wen (2012)
Symmetry-Protected Topological Orders in Interacting Bosonic SystemsScience, 338
Avikar Periwal, Eric Cooper, Philipp Kunkel, J. Wienand, E. Davis, M. Schleier-Smith (2021)
Programmable interactions and emergent geometry in an array of atom cloudsNature, 600
P. Roushan, P. Roushan, C. Neill, Yu Chen, Yu Chen, M. Kolodrubetz, C. Quintana, N. Leung, Michael Fang, R. Barends, R. Barends, B. Campbell, Zijun Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, J. Mutus, P. O’Malley, D. Sank, D. Sank, A. Vainsencher, J. Wenner, T. White, A. Polkovnikov, A. Cleland, J. Martinis, J. Martinis (2014)
Observation of topological transitions in interacting quantum circuitsNature, 515
A scheme for measuring topological properties in a two‐photon‐driven Kerr‐nonlinear (KNR) resonator subjected to a single‐photon modulation is proposed. The topological properties are revealed through the observation of the Berry curvature and hence the first Chern number, as a nonadiabatic response of the physical observable to the change rate of the control parameter of the modulated drive. The parameter manifold, constructed from the system's Hamiltonian that determines its dynamics constrained in the state space spanned by the even and odd cat states as two basis states, is adjusted so that the degeneracy crossing the manifold indicates a topological transition. The scheme, with such continuous variable states in mesoscopic systems, provides a new perspective for exploration of the geometry and the related topology with complex systems.
Advanced Quantum Technologies – Wiley
Published: Jun 1, 2023
Keywords: cat‐qubit; continuous variable systems; first Chern number
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.