Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Shiraz berry size in relation to seed number and implications for juice and wine composition

Shiraz berry size in relation to seed number and implications for juice and wine composition This study was conducted over three seasons on irrigated Shiraz grapevines growing in a warm climate. We addressed the question of whether differences in berry size (within a population of berries from minimally pruned, own‐rooted or Ramsey‐grafted vines), would lead to differences in juice composition, wine composition or wine sensory score. Predictably, berry mass was found to increase with seed number, but berries in the smallest mass categories (0.3–0.7 g) still had similar juice soluble solids and pH; and similar concentrations of K+, tartaric acid and malic acid, compared with larger berries (1.4–2.0 g). Only for the very smallest mass category (0.3–0.55 g) was there any indication of better colour density (both for own‐rooted and Ramsey‐grafted vines) or higher anthocyanin concentration (for own‐rooted vines) compared with larger berries (1.4–2.0 g). Concentrations of tartaric acid and K+ in berry skins were highest in the smallest berry mass categories (0.3–0.7 g) and decreased with increasing berry mass (up to 1.4–2.0 g). A strong correlation (R2= 0.85) between skin tartaric acid and K+ concentrations was observed across that range. Small‐scale wine lots based on small berries (0.8–0.9 g) versus large berries (1.2–1.3 g) showed no differences in measures such as soluble solids, total acids or pH of juice; nor any differences in pH, total acids, K+, tartrate, malate, spectral characteristics or sensory score of corresponding wines. Moreover, small berries had a similar skin to fruit ratio, and a similar juice yield, compared to large berries. However, when measured post‐fermentation, the ratio of seed weight to skin weight was higher for small berries. The mass range of berries used here for small‐scale winemaking (i.e. from 0.8–0.9 g up to 1.2–1.3 g), covered the range of Shiraz berry mass typically found in irrigated vineyards (from 0.8 to 1.5 g), and thus confirms the relevance of present outcomes to practical winemaking. Finally, our data for variation in juice and wine composition as a function of berry size, showed consistent trends for all seasons, and thus implies that reported instances of improved wine quality from small berries (often associated with certain pruning treatments or deficit irrigation strategies), are more likely due to treatment effects that lead to small fruit, rather than to intrinsic developmental differences between large and small berries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Australian Journal of Grape and Wine Research Wiley

Shiraz berry size in relation to seed number and implications for juice and wine composition

Loading next page...
 
/lp/wiley/shiraz-berry-size-in-relation-to-seed-number-and-implications-for-s61UDLrTV5
Publisher
Wiley
Copyright
Copyright © 2005 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1322-7130
eISSN
1755-0238
DOI
10.1111/j.1755-0238.2005.tb00273.x
Publisher site
See Article on Publisher Site

Abstract

This study was conducted over three seasons on irrigated Shiraz grapevines growing in a warm climate. We addressed the question of whether differences in berry size (within a population of berries from minimally pruned, own‐rooted or Ramsey‐grafted vines), would lead to differences in juice composition, wine composition or wine sensory score. Predictably, berry mass was found to increase with seed number, but berries in the smallest mass categories (0.3–0.7 g) still had similar juice soluble solids and pH; and similar concentrations of K+, tartaric acid and malic acid, compared with larger berries (1.4–2.0 g). Only for the very smallest mass category (0.3–0.55 g) was there any indication of better colour density (both for own‐rooted and Ramsey‐grafted vines) or higher anthocyanin concentration (for own‐rooted vines) compared with larger berries (1.4–2.0 g). Concentrations of tartaric acid and K+ in berry skins were highest in the smallest berry mass categories (0.3–0.7 g) and decreased with increasing berry mass (up to 1.4–2.0 g). A strong correlation (R2= 0.85) between skin tartaric acid and K+ concentrations was observed across that range. Small‐scale wine lots based on small berries (0.8–0.9 g) versus large berries (1.2–1.3 g) showed no differences in measures such as soluble solids, total acids or pH of juice; nor any differences in pH, total acids, K+, tartrate, malate, spectral characteristics or sensory score of corresponding wines. Moreover, small berries had a similar skin to fruit ratio, and a similar juice yield, compared to large berries. However, when measured post‐fermentation, the ratio of seed weight to skin weight was higher for small berries. The mass range of berries used here for small‐scale winemaking (i.e. from 0.8–0.9 g up to 1.2–1.3 g), covered the range of Shiraz berry mass typically found in irrigated vineyards (from 0.8 to 1.5 g), and thus confirms the relevance of present outcomes to practical winemaking. Finally, our data for variation in juice and wine composition as a function of berry size, showed consistent trends for all seasons, and thus implies that reported instances of improved wine quality from small berries (often associated with certain pruning treatments or deficit irrigation strategies), are more likely due to treatment effects that lead to small fruit, rather than to intrinsic developmental differences between large and small berries.

Journal

Australian Journal of Grape and Wine ResearchWiley

Published: Apr 1, 2005

References