Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Single Nanoparticle Magnetic Spin Memristor

Single Nanoparticle Magnetic Spin Memristor There is an increasing demand for the development of a simple Si‐based universal memory device at the nanoscale that operates at high frequencies. Spin‐electronics (spintronics) can, in principle, increase the efficiency of devices and allow them to operate at high frequencies. A primary challenge for reducing the dimensions of spintronic devices is the requirement for high spin currents. To overcome this problem, a new approach is presented that uses helical chiral molecules exhibiting spin‐selective electron transport, which is called the chiral‐induced spin selectivity (CISS) effect. Using the CISS effect, the active memory device is miniaturized for the first time from the micrometer scale to 30 nm in size, and this device presents memristor‐like nonlinear logic operation at low voltages under ambient conditions and room temperature. A single nanoparticle, along with Au contacts and chiral molecules, is sufficient to function as a memory device. A single ferromagnetic nanoplatelet is used as a fixed hard magnet combined with Au contacts in which the gold contacts act as soft magnets due to the adsorbed chiral molecules. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Small Wiley

Loading next page...
 
/lp/wiley/single-nanoparticle-magnetic-spin-memristor-UgEyrsztu2

References (25)

Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1613-6810
eISSN
1613-6829
DOI
10.1002/smll.201801249
Publisher site
See Article on Publisher Site

Abstract

There is an increasing demand for the development of a simple Si‐based universal memory device at the nanoscale that operates at high frequencies. Spin‐electronics (spintronics) can, in principle, increase the efficiency of devices and allow them to operate at high frequencies. A primary challenge for reducing the dimensions of spintronic devices is the requirement for high spin currents. To overcome this problem, a new approach is presented that uses helical chiral molecules exhibiting spin‐selective electron transport, which is called the chiral‐induced spin selectivity (CISS) effect. Using the CISS effect, the active memory device is miniaturized for the first time from the micrometer scale to 30 nm in size, and this device presents memristor‐like nonlinear logic operation at low voltages under ambient conditions and room temperature. A single nanoparticle, along with Au contacts and chiral molecules, is sufficient to function as a memory device. A single ferromagnetic nanoplatelet is used as a fixed hard magnet combined with Au contacts in which the gold contacts act as soft magnets due to the adsorbed chiral molecules.

Journal

SmallWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

There are no references for this article.