Access the full text.
Sign up today, get DeepDyve free for 14 days.
R. Gray (2002)
Modeling Survival Data: Extending the Cox ModelJournal of the American Statistical Association, 97
Dennis Beal (2010)
A Macro for Calculating Summary Statistics on Left Censored Environmental Data using the Kaplan-Meier Method
O. Aalen (1978)
Nonparametric Inference for a Family of Counting ProcessesAnnals of Statistics, 6
D. Hosmer, S. Lemeshow, S. May (2008)
Applied Survival Analysis: Regression Modeling of Time-to-Event Data
K. Tan, T. Eguchi, P. Adusumilli (2017)
Competing risks and cancer-specific mortality: why it mattersOncotarget, 9
P. Austin (2013)
The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experimentsStatistics in Medicine, 33
J. Lindsey, L. Ryan (1998)
Tutorial in biostatistics methods for interval-censored data.Statistics in medicine, 17 2
Jason Rich, J. Neely, R. Paniello, Courtney Voelker, B. Nussenbaum, Eric Wang (2010)
A practical guide to understanding Kaplan-Meier curvesOtolaryngology- Head and Neck Surgery, 143
(2019)
Analysis of multiple failure‐time survival data: StataCorp LLC; [01/07/2019
H. Uno, T. Cai, M. Pencina, R. D’Agostino, Lee-Jen Wei (2011)
On the C‐statistics for evaluating overall adequacy of risk prediction procedures with censored survival dataStatistics in Medicine, 30
D. Clayton (1978)
A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidenceBiometrika, 65
N. Shoari, J. Dubé, Shoja'eddin Chenouri (2016)
On the use of the substitution method in left-censored environmental dataHuman and Ecological Risk Assessment: An International Journal, 22
Anne Thiébaut, J. Benichou (2004)
Choice of time‐scale in Cox's model analysis of epidemiologic cohort data: a simulation studyStatistics in Medicine, 23
D. Lin, Lee-Jen Wei, Z. Ying (1993)
Checking the Cox model with cumulative sums of martingale-based residualsBiometrika, 80
J. Sterne, K. Tilling (2002)
G-estimation of Causal Effects, Allowing for Time-varying ConfoundingThe Stata Journal, 2
D. Scharfstein, J. Hogan, A. Herman (2012)
On the prevention and analysis of missing data in randomized clinical trials: the state of the art.The Journal of bone and joint surgery. American volume, 94 Suppl 1
D. Scharfstein, J. Robins, Wesley Eddings, A. Rotnitzky (2001)
Inference in Randomized Studies with Informative Censoring and Discrete Time‐to‐Event EndpointsBiometrics, 57
T. Therneau, P. Grambsch (2000)
Modeling Survival Data: Extending the Cox Model
E. Spjøtvoll (1984)
Discussion of Paper by D.R. CoxInternational Statistical Review, 52
D. Srivastava, M. Hudson, L. Robison, Xiaoyong Wu, S. Rai (2015)
Design and Analysis of Cohort Studies: Issues and PracticesBiometrics & Biostatistics International Journal, 2
A. Hazra, N. Gogtay (2017)
Biostatistics Series Module 9: Survival AnalysisIndian Journal of Dermatology, 62
D., R., Cox
Regression Models and Life-Tables
G. Gómez, M. Calle, Ramon Oller, K. Langohr (2009)
Tutorial on methods for interval-censored data and their implementation in RStatistical Modelling, 9
J. Terza, A. Basu, P. Rathouz (2008)
Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling.Journal of health economics, 27 3
Limin Peng (2017)
Quantile Regression for Survival Analysis
T. Eguchi, S. Bains, Ming-Ching Lee, K. Tan, B. Hristov, D. Buitrago, M. Bains, R. Downey, James Huang, J. Isbell, Bernard Park, V. Rusch, David Jones, P. Adusumilli (2017)
Impact of Increasing Age on Cause-Specific Mortality and Morbidity in Patients With Stage I Non-Small-Cell Lung Cancer: A Competing Risks Analysis.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 35 3
M. Wulfsohn, A. Tsiatis (1997)
A joint model for survival and longitudinal data measured with error.Biometrics, 53 1
S. Lagakos, James Williams (1978)
Models for censored survival analysis: A cone class of variable-sum modelsBiometrika, 65
J. Witteman, R. D’Agostino, T. Stijnen, W. Kannel, Janet Cobb, M. Ridder, A. Hofman, J. Robins (1998)
G-estimation of causal effects: isolated systolic hypertension and cardiovascular death in the Framingham Heart Study.American journal of epidemiology, 148 4
J. Neaton, Gerry Gray, Bram Zuckerman, M. Konstam (2005)
Key issues in end point selection for heart failure trials: composite end points.Journal of cardiac failure, 11 8
H. Yuen, A. Mackinnon (2016)
Performance of joint modelling of time-to-event data with time-dependent predictors: an assessment based on transition to psychosis dataPeerJ, 4
P. Chalise, E. Chicken, D. McGee (2013)
Performance and Prediction for Varying Survival Time ScalesCommunications in Statistics - Simulation and Computation, 42
Agnieszka Kr'ol, A. Mauguen, Yassin Mazroui, Alexandre Laurent, S. Michiels, V. Rondeau (2017)
Tutorial in Joint Modeling and Prediction: a Statistical Software for Correlated Longitudinal Outcomes, Recurrent Events and a Terminal EventarXiv: Computation
Peter Austin, Douglas Lee, Jason Fine (2016)
Introduction to the Analysis of Survival Data in the Presence of Competing RisksCirculation, 133
J. Karvanen, O. Saarela, K. Kuulasmaa (2021)
Nonparametric Multiple Imputation of Left Censored Event Times in Analysis of Follow-up DataJournal of Data Science
F Harrell, Kerry Lee, D. Mark (2005)
Prognostic/Clinical Prediction Models: Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors
H. Putter, M. Fiocco, Ronald Geskus (2007)
Tutorial in biostatistics: competing risks and multi‐state modelsStatistics in Medicine, 26
Stuart Lipsitz, M. Parzen (1996)
A jackknife estimator of variance for Cox regression for correlated survival data.Biometrics, 52 1
R. O'neill, R. Temple (2012)
The Prevention and Treatment of Missing Data in Clinical Trials: An FDA Perspective on the Importance of Dealing With ItClinical Pharmacology & Therapeutics, 91
B. Radke (2003)
A demonstration of interval-censored survival analysis.Preventive veterinary medicine, 59 4
A. Zare, M. Hosseini, M. Mahmoodi, K. Mohammad, H. Zeraati, K. Naieni (2015)
A Comparison between Accelerated Failure-time and Cox Proportional Hazard Models in Analyzing the Survival of Gastric Cancer PatientsIranian Journal of Public Health, 44
X. Xue, Xianhong Xie, H. Strickler (2018)
A censored quantile regression approach for the analysis of time to event dataStatistical Methods in Medical Research, 27
M. Wallace, E. Moodie, D. Stephens (2017)
An R Package for G-estimation of Structural Nested Mean Models.Epidemiology
Pallipamu Rao, D. Hosmer, S. Lemeshow (2000)
Applied Survival Analysis: Regression Modeling of Time to Event DataJournal of the American Statistical Association, 95
Breslow N (1972)
Discussion of the paper by D. R. CoxJ R Stat Soc B Methodol, 34
G. Andriole, E. Crawford, R. Grubb, S. Buys, D. Chia, T. Church, M. Fouad, E. Gelmann, P. Kvale, D. Reding, J. Weissfeld, L. Yokochi, B. O'Brien, J. Clapp, J. Rathmell, T. Riley, R. Hayes, Barnett Kramer, G. Izmirlian, A. Miller, P. Pinsky, P. Prorok, J. Gohagan, C. Berg (2009)
Mortality results from a randomized prostate-cancer screening trial.The New England journal of medicine, 360 13
J. Cuzick, I. Šestak, S. Cawthorn, H. Hamed, K. Holli, A. Howell, J. Forbes (2015)
Tamoxifen for prevention of breast cancer: extended long-term follow-up of the IBIS-I breast cancer prevention trialThe Lancet. Oncology, 16
J. Bland, D. Altman, Rostomily Rc, Spence Am, D. Duong, K. Mccormick, M. Bland, Berger, G=glioblastoma A=astrocytoma (2004)
The logrank testBMJ : British Medical Journal, 328
P. Hougaard (2001)
Analysis of Multivariate Survival Data
M. Moeschberger (1974)
Life Tests Under Dependent Competing Causes of FailureTechnometrics, 16
Dennis Beal (2015)
A Macro for Calculating Percentiles on Left Censored Environmental Data using the Kaplan-Meier Method
R. Little, R. D'Agostino, Michael Cohen, K. Dickersin, S. Emerson, J. Farrar, C. Frangakis, J. Hogan, G. Molenberghs, S. Murphy, J. Neaton, A. Rotnitzky, D. Scharfstein, W. Shih, J. Siegel, H. Stern (2012)
The prevention and treatment of missing data in clinical trials.The New England journal of medicine, 367 14
M. Wolbers, M. Koller, V. Stel, B. Schaer, K. Jager, K. Leffondré, G. Heinze (2014)
Competing risks analyses: objectives and approachesEuropean Heart Journal, 35
V. Montori, G. Permanyer-Miralda, I. Ferreira-González, J. Busse, V. Pacheco-Huergo, D. Bryant, J. Alonso, E. Akl, A. Domingo-Salvany, E. Mills, Ping Wu, H. Schünemann, Roman Jaeschke, G. Guyatt (2005)
Validity of composite end points in clinical trialsBMJ : British Medical Journal, 330
J. Fine, R. Gray (1999)
A Proportional Hazards Model for the Subdistribution of a Competing RiskJournal of the American Statistical Association, 94
Edward Kom, B. Graubard, D. Midthune (1997)
Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale.American journal of epidemiology, 145 1
P. Grambsch, T. Therneau (1994)
Proportional hazards tests and diagnostics based on weighted residualsBiometrika, 81
A. Hazra, N. Gogtay (2016)
Biostatistics Series Module 3: Comparing Groups: Numerical VariablesIndian Journal of Dermatology, 61
Minje Sung, A. Erkanli, E. Costello (2014)
Estimating the Causal Effect of Conduct Disorder on the Time from First Substance Use to Substance Use Disorders Using G-EstimationSubstance Abuse, 35
C. Carlin, C. Solid (2014)
An approach to addressing selection bias in survival analysisStatistics in Medicine, 33
Barnes (1961)
Discussion of the PaperAnnals of the New York Academy of Sciences, 91
M. Koller, H. Raatz, E. Steyerberg, M. Wolbers (2011)
Competing risks and the clinical community: irrelevance or ignorance?Statistics in Medicine, 31
J. Lin, Lee-Jen Wei (1992)
Linear Regression Analysis for Multivariate Failure Time ObservationsJournal of the American Statistical Association, 87
D. Collett (1994)
Modelling survival data
Hyun Kang (2013)
The prevention and handling of the missing dataKorean Journal of Anesthesiology, 64
S. Chiou, Sangwook Kang, Jun Yan (2014)
Fitting Accelerated Failure Time Models in Routine Survival Analysis with R Package aftgeeJournal of Statistical Software, 61
D. Collet (2004)
Modelling Survival Data in Medical ResearchTechnometrics, 46
C. Walraven, F. McAlister (2016)
Competing risk bias was common in Kaplan-Meier risk estimates published in prominent medical journals.Journal of clinical epidemiology, 69
Lee-Jen Wei (1992)
The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis.Statistics in medicine, 11 14-15
S. Duffy, I. Nagtegaal, M. Wallis, F. Cafferty, N. Houssami, J. Warwick, P. Allgood, O. Kearins, N. Tappenden, E. O'sullivan, G. Lawrence (2008)
Correcting for lead time and length bias in estimating the effect of screen detection on cancer survival.American journal of epidemiology, 168 1
(2017)
An introduction to the joint modeling of longitudinal and survival data, with applications in R
M. Perera, C. Tsokos (2018)
A Statistical Model with Non-Linear Effects and Non-Proportional Hazards for Breast Cancer Survival Analysis, 07
Lee-Jen Wei, D. Glidden (1997)
An overview of statistical methods for multiple failure time data in clinical trials.Statistics in medicine, 16 8
A. Tsiatis, M. Davidian (2004)
Joint modelling of longitudinal and time-to-event data: an overview
G. Scuderi**, J. Insall (1994)
Survival analysis.The Journal of bone and joint surgery. British volume, 76 3
Cox DR (1972)
10.1111/j.2517-6161.1972.tb00899.xJ R Stat Soc B Methodol, 34
Cancer Reports – Wiley
Published: Aug 1, 2020
Keywords: ; ;
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.