Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Tailoring Semiconductor Lateral Multijunctions for Giant Photoconductivity Enhancement

Tailoring Semiconductor Lateral Multijunctions for Giant Photoconductivity Enhancement Semiconductor heterostructures have played a critical role as the enabler for new science and technology. The emergence of transition‐metal dichalcogenides (TMDs) as atomically thin semiconductors has opened new frontiers in semiconductor heterostructures either by stacking different TMDs to form vertical heterojunctions or by stitching them laterally to form lateral heterojunctions via direct growth. In conventional semiconductor heterostructures, the design of multijunctions is critical to achieve carrier confinement. Analogously, successful synthesis of a monolayer WS2/WS2(1−x)Se2x/WS2 multijunction lateral heterostructure via direct growth by chemical vapor deposition is reported. The grown structures are characterized by Raman, photoluminescence, and annular dark‐field scanning transmission electron microscopy to determine their lateral compositional profile. More importantly, using microwave impedance microscopy, it is demonstrated that the local photoconductivity in the alloy region can be tailored and enhanced by two orders of magnitude over pure WS2. Finite element analysis confirms that this effect is due to the carrier diffusion and confinement into the alloy region. This work exemplifies the technological potential of atomically thin lateral heterostructures in optoelectronic applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Materials Wiley

Tailoring Semiconductor Lateral Multijunctions for Giant Photoconductivity Enhancement

Loading next page...
 
/lp/wiley/tailoring-semiconductor-lateral-multijunctions-for-giant-p9NLdBtqao

References (36)

Publisher
Wiley
Copyright
© 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
0935-9648
eISSN
1521-4095
DOI
10.1002/adma.201703680
pmid
28891108
Publisher site
See Article on Publisher Site

Abstract

Semiconductor heterostructures have played a critical role as the enabler for new science and technology. The emergence of transition‐metal dichalcogenides (TMDs) as atomically thin semiconductors has opened new frontiers in semiconductor heterostructures either by stacking different TMDs to form vertical heterojunctions or by stitching them laterally to form lateral heterojunctions via direct growth. In conventional semiconductor heterostructures, the design of multijunctions is critical to achieve carrier confinement. Analogously, successful synthesis of a monolayer WS2/WS2(1−x)Se2x/WS2 multijunction lateral heterostructure via direct growth by chemical vapor deposition is reported. The grown structures are characterized by Raman, photoluminescence, and annular dark‐field scanning transmission electron microscopy to determine their lateral compositional profile. More importantly, using microwave impedance microscopy, it is demonstrated that the local photoconductivity in the alloy region can be tailored and enhanced by two orders of magnitude over pure WS2. Finite element analysis confirms that this effect is due to the carrier diffusion and confinement into the alloy region. This work exemplifies the technological potential of atomically thin lateral heterostructures in optoelectronic applications.

Journal

Advanced MaterialsWiley

Published: Nov 1, 2017

Keywords: ; ;

There are no references for this article.