Access the full text.
Sign up today, get DeepDyve free for 14 days.
T. Zhu, Daming Zheng, M. Rager, T. Pauporté (2020)
The Stabilization of Formamidinium Lead Tri‐Iodide Perovskite through a Methylammonium‐Based Additive for High‐Efficiency Solar CellsSolar RRL
T. Zhu, Jun Su, F. Labat, I. Ciofini, T. Pauporté (2019)
Interfacial Engineering through Chloride-Functionalized Self-Assembled Monolayer for High-Performance Perovskite Solar Cells.ACS applied materials & interfaces
Xiao Wang, Yingping Fan, Li Wang, Chen Chen, Zhipeng Li, Ranran Liu, Hongguang Meng, Zhipeng Shao, Xiaofan Du, Huanrui Zhang, G. Cui, S. Pang (2020)
Perovskite Solution Aging: What Happened and How to Inhibit?Chem, 6
Minjin Kim, Gi-Hwan Kim, T. Lee, I. Choi, H. Choi, Yimhyun Jo, Yung Yoon, Jae Kim, Jiyun Lee, Daihong Huh, H. Lee, S. Kwak, Jin Kim, Dong Kim (2019)
Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar CellsJoule
Xiaodong Li, Wenxiao Zhang, Xuemin Guo, Chunyan Lu, Jiyao Wei, Junfeng Fang (2022)
Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cellsScience, 375
Fei Zhang, K. Zhu (2019)
Additive Engineering for Efficient and Stable Perovskite Solar CellsAdvanced Energy Materials, 10
Yiming Li, Zijing Chen, Bingcheng Yu, Shannon Tan, Yuqi Cui, Huijue Wu, Yanhong Luo, Jiangjian Shi, Dongmei Li, Q. Meng (2022)
Efficient, stable formamidinium-cesium perovskite solar cells and minimodules enabled by crystallization regulationJoule
T. Zhu, Daming Zheng, Jiawen Liu, L. Coolen, T. Pauporté (2020)
PEAI-Based Interfacial Layer for High-Efficiency and Stable Solar Cells Based on a MACl-Mediated Grown FA0.94MA0.06PbI3 Perovskite.ACS applied materials & interfaces, 12 33
Pengjiu Wang, Zhipeng Shao, M. Ulfa, T. Pauporté (2017)
Insights into the Hole Blocking Layer Effect on the Perovskite Solar Cell Performance and Impedance ResponseJournal of Physical Chemistry C, 121
Randi Azmi, Esma Ugur, A. Seitkhan, Faisal Aljamaan, A. Subbiah, Jiang Liu, G. Harrison, M. Nugraha, M. Eswaran, M. Babics, Yuang-Long Chen, Fuzong Xu, Thomas Allen, A. Rehman, Chien-Lung Wang, T. Anthopoulos, U. Schwingenschlögl, M. Bastiani, Erkan Aydin, S. Wolf (2022)
Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctionsScience, 376
Minjin Kim, Jaeki Jeong, Haizhou Lu, T. Lee, F. Eickemeyer, Yuhang Liu, I. Choi, S. Choi, Yimhyun Jo, Hak‐Beom Kim, Sung-In Mo, Young‐Ki Kim, Heunjeong Lee, N. An, Shinuk Cho, W. Tress, S. Zakeeruddin, A. Hagfeldt, Jin Kim, M. Grätzel, Dong Kim (2022)
Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cellsScience, 375
Shaun Tan, Tianyi Huang, I. Yavuz, Rui Wang, Taegeun Yoon, Mingjie Xu, Qiyu Xing, Keonwoo Park, Do‐Kyoung Lee, Chung-Hao Chen, Ran Zheng, Taegeun Yoon, Yepin Zhao, Hao-Cheng Wang, Dong Meng, Jingjing Xue, Y. Song, X. Pan, N. Park, Jin‐Wook Lee, Yang Yang (2022)
Stability-limiting heterointerfaces of perovskite photovoltaicsNature, 605
L. Gollino, T. Pauporté (2021)
Lead‐Less Halide Perovskite Solar CellsSolar RRL
E. Juárez-Pérez, L. Ono, I. Uriarte, E. Cocinero, Y. Qi (2019)
Degradation Mechanism and Relative Stability of Methylammonium Halide Based Perovskites Analyzed on the Basis of Acid-Base Theory.ACS applied materials & interfaces, 11 13
A. Leblanc, N. Mercier, M. Allain, J. Dittmer, T. Pauporté, V. Fernandez, F. Boucher, M. Képénekian, C. Katan (2019)
Enhanced Stability and Band Gap Tuning of α-[HC(NH2)2]PbI3 Hybrid Perovskite by Large Cation Integration.ACS applied materials & interfaces, 11 23
Silver‐Hamill Turren‐Cruz, A. Hagfeldt, Michael Saliba (2018)
Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architectureScience, 362
Hui‐Seon Kim, Chang-Ryul Lee, J. Im, Ki-Beom Lee, T. Moehl, Arianna Marchioro, S. Moon, R. Humphry‐Baker, Jun‐Ho Yum, J. Moser, M. Grätzel, N. Park (2012)
Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%Scientific Reports, 2
J. Yun, Jincheol Kim, T. Young, R. Patterson, Dohyung Kim, J. Seidel, Sean Lim, M. Green, Shujuan Huang, A. Ho-baillie (2018)
Humidity‐Induced Degradation via Grain Boundaries of HC(NH2)2PbI3 Planar Perovskite Solar CellsAdvanced Functional Materials, 28
Lei Lei, Ming Li, D. Grant, Songwang Yang, Yu Yu, J. Watts, D. Amabilino (2020)
Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance OptoelectronicsChemistry of Materials
W. Hui, Lingfeng Chao, Hui Lu, Fei Xia, Qi Wei, Zhenhuang Su, Tingting Niu, Lei Tao, B. Du, Deli Li, Yue Wang, He Dong, Shouwei Zuo, Bixin Li, Weiwei Shi, Xueqin Ran, P. Li, Hui Zhang, Zhongbin Wu, Chenxin Ran, Lin Song, G. Xing, Xingyu Gao, Jing Zhang, Yingdong Xia, Yonghua Chen, Wei Huang (2021)
Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidityScience, 371
Huanping Zhou, Qi Chen, Gang Li, Song Luo, T. Song, Hsin‐Sheng Duan, Z. Hong, J. You, Yongsheng Liu, Yang Yang (2014)
Interface engineering of highly efficient perovskite solar cellsScience, 345
T. Pauporté, Jorgen Finne, A. Kahn-Harari, D. Lincot (2005)
Growth by plasma electrolysis of zirconium oxide films in the micrometer rangeSurface & Coatings Technology, 199
Jaeki Jeong, Minjin Kim, Jongdeuk Seo, Haizhou Lu, P. Ahlawat, Aditya Mishra, Yingguo Yang, M. Hope, F. Eickemeyer, Maengsuk Kim, Yung Yoon, I. Choi, Barbara Darwich, S. Choi, Yimhyun Jo, Jun Lee, Bright Walker, S. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, Dong Kim, M. Grätzel, Jin Kim (2021)
Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cellsNature, 592
Didac Pitarch-Tena, T. Ngo, Marta Vallés-Pelarda, T. Pauporté, I. Mora‐Seró (2018)
Impedance Spectroscopy Measurements in Perovskite Solar Cells: Device Stability and Noise ReductionACS energy letters, 3
Y. Park, Inyoung Jeong, S. Bae, H. Son, Phillip Lee, Jinwoo Lee, C. Lee, M. Ko (2017)
Inorganic Rubidium Cation as an Enhancer for Photovoltaic Performance and Moisture Stability of HC(NH2)2PbI3 Perovskite Solar CellsAdvanced Functional Materials, 27
Michael Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith (2012)
Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide PerovskitesScience, 338
A. Leblanc, N. Mercier, M. Allain, J. Dittmer, V. Fernandez, T. Pauporté (2017)
Lead- and Iodide-Deficient (CH3 NH3 )PbI3 (d-MAPI): The Bridge between 2D and 3D Hybrid Perovskites.Angewandte Chemie, 56 50
J. Burschka, N. Pellet, S. Moon, R. Humphry‐Baker, P. Gao, M. Nazeeruddin, M. Grätzel (2013)
Sequential deposition as a route to high-performance perovskite-sensitized solar cellsNature, 499
Daming Zheng, T. Zhu, Yanfa Yan, T. Pauporté (2022)
Controlling the Formation Process of Methylammonium‐Free Halide Perovskite Films for a Homogeneous Incorporation of Alkali Metal Cations Beneficial to Solar Cell PerformanceAdvanced Energy Materials, 12
Jie Zhang, P. Barboux, T. Pauporté (2014)
Electrochemical Design of Nanostructured ZnO Charge Carrier Layers for Efficient Solid‐State Perovskite‐Sensitized Solar CellsAdvanced Energy Materials, 4
Chao Luo, Guanhaojie Zheng, F. Gao, Xianjin Wang, Yao Zhao, Xingyu Gao, Qing Zhao (2022)
Facet orientation tailoring via 2D-seed- induced growth enables highly efficient and stable perovskite solar cellsJoule
The recent remarkable achievements in terms of efficiency performance and stability of hybrid organic–inorganic perovskite solar cells (PSCs) are notably obtained by optimizing the A‐site cation composition of formamidinium‐based 3D perovskites. As methylammonium chloride is ubiquitously employed in precursor solution for very high efficiency formamidinium‐based PSC, the purpose of the present paper is to unveil the exact role of methylammonium (MA+), chloride, and solvent on the film growth and their fate upon the layer thermal annealing process. Methylammonium is shown to react with formamidinium to form two methyl compounds while its excess is eliminated along with chloride. The final perovskite layer A‐sites are mainly occupied by formamidinium, whereas MA+ content is only 2–3 mol%, and below the 3‐N‐methyl formamidinium one. 1‐N‐methyl formamidinium is detected as traces. Meanwhile, the solvent is homogenously eliminated throughout the layer thickness. Upon thermal aging stress, the layer is degraded from its top with the formation of PbI2. MA+ is rapidly fully eliminated while the stable methyl formamidinium compounds remain in the perovskite layer.
Advanced Materials Interfaces – Wiley
Published: Nov 1, 2022
Keywords: cations reactivity upon thermal annealing; halide perovskite layer; methyl formamidinium; nuclear magnetic resonance (NMR); thermal aging
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.