Access the full text.
Sign up today, get DeepDyve free for 14 days.
Ru Smith, A. Ross (2016)
Amberground pholadid bivalve borings and inclusions in Burmese amber: implications for proximity of resin-producing forests to brackish waters, and the age of the amberEarth and Environmental Science Transactions of the Royal Society of Edinburgh, 107
V. Girard, D. Néraudeau, G. Breton, Simona Martin, J. Martin (2009)
Contamination of Amber Samples by Recent Microorganisms and Remediation Evidenced by Mid-Cretaceous Amber of FranceGeomicrobiology Journal, 26
L. McCobb, Ij Duncan, E. Jarzembowski, B. Stankiewicz, M. Wills, D. Briggs (1998)
Taphonomy of the insects from the Insect Bed (Bembridge Marls), late Eocene, Isle of Wight, EnglandGeological Magazine, 135
P. Heaney, C. Prewitt, G. Gibbs (1994)
Silica : physical behavior, geochemistry and materials applications
(1992)
Soft‐part preservation of beetles in Tertiary amber from the Dominican Republic
P. Heaney (1993)
A proposed mechanism for the growth of chalcedonyContributions to Mineralogy and Petrology, 115
L. Knauth (1994)
Petrogenesis of chertReviews in Mineralogy & Geochemistry, 29
G. Shi, S. Dutta, Swagata Paul, Bo Wang, F. Jacques (2014)
Terpenoid Compositions and Botanical Origins of Late Cretaceous and Miocene Amber from ChinaPLoS ONE, 9
M. Kowalewska, J. Szwedo (2009)
Examination of the Baltic amber inclusion surface using SEM techniques and X-ray microanalysisPalaeogeography, Palaeoclimatology, Palaeoecology, 271
D. Briggs (2003)
THE ROLE OF DECAY AND MINERALIZATION IN THE PRESERVATION OF SOFT-BODIED FOSSILSAnnual Review of Earth and Planetary Sciences, 31
D. Briggs, D. Siveter, D. Siveter (1996)
Soft-bodied fossils from a Silurian volcaniclastic depositNature, 382
N. Andersen, G. Poinar (1998)
A marine water strider (Hemiptera: Veliidae) from Dominican amberInsect Systematics & Evolution, 29
A. Ross (2020)
Supplement to the Burmese (Myanmar) amber checklist and bibliography, 2020Palaeoentomology
G. Poinar (1992)
Life in Amber
Emmanuel Arriaga-Varela, A. Brunke, J. Girón, Karol Szawaryn, J. Bruthansová, M. Fikáček (2019)
Micro-CT reveals hidden morphology and clarifies the phylogenetic position of Baltic amber water scavenger beetles (Coleoptera: Hydrophilidae)Historical Biology, 33
B. Stankiewicz, D. Briggs, R. Michels, M. Collinson, MB Flannery, R. Evershed (2000)
Alternative origin of aliphatic polymer in kerogenGeology, 28
(2017)
Conifers of the" Baltic Amber Forest" and their palaeoecological significance
R. Maliva, A. Knoll, B. Simonson (2005)
Secular change in the Precambrian silica cycle: Insights from chert petrologyGeological Society of America Bulletin, 117
H. Barthel, D. Fougerouse, T. Geisler, J. Rust (2020)
Fluoridation of a lizard bone embedded in Dominican amber suggests open-system behaviorPLoS ONE, 15
B. Koller, J. Schmitt, G. Tischendorf (2005)
Cellular fine structures and histochemical reactions in the tissue of a cypress twig preserved in Baltic amberProceedings of the Royal Society B: Biological Sciences, 272
A. Schmidt, U. Kaulfuss, J. Bannister, V. Baranov, C. Beimforde, N. Bleile, A. Borkent, A. Busch, J. Conran, M. Engel, M. Harvey, E. Kennedy, P. Kerr, Elina Kettunen, Anna Kiecksee, Franziska Lengeling, J. Lindqvist, M. Maraun, D. Mildenhall, V. Perrichot, J. Rikkinen, Eva‐Maria Sadowski, L. Seyfullah, Frauke Stebner, J. Szwedo, Philipp Ulbrich, Daphne Lee (2017)
Amber inclusions from New ZealandGondwana Research, 56
B. Stankiewicz, H. Poinar, D. Briggs, R. Evershed, G. Poinar (1998)
Chemical preservation of plants and insects in natural resinsProceedings of the Royal Society of London. Series B: Biological Sciences, 265
C. Hartl, A. Schmidt, J. Heinrichs, L. Seyfullah, N. Schäfer, C. Gröhn, J. Rikkinen, Ulla Kaasalainen (2015)
Lichen preservation in amber: morphology, ultrastructure, chemofossils, and taphonomic alterationFossil Record, 18
Alison Henwood (1992)
Exceptional preservation of dipteran flight muscle and the taphonomy of insects in AmberPALAIOS, 7
J. Sagemann, S. Bale, D. Briggs, R. Parkes (1999)
Controls on the formation of authigenic minerals in association with decaying organic matter: an experimental approachGeochimica et Cosmochimica Acta, 63
M. Havelcová, V. Machovič, J. Mizera, I. Sýkorová, M. René, L. Borecká, L. Lapčák, O. Bičáková, Oldřich Janeček, Z. Dvořák (2016)
Structural changes in amber due to uranium mineralization.Journal of environmental radioactivity, 158-159
Widespread mineralization of soft-bodied insects in Cretaceous amber
D. Grimaldi, M. Engel, Paul Nascimbene (2002)
Fossiliferous Cretaceous Amber from Myanmar (Burma): Its Rediscovery, Biotic Diversity, and Paleontological Significance
C. Sánchez-Mora, M. Ribasés, J. Ramos-Quiroga, M. Casas, R. Bosch, A. Boreatti‐Hümmer, M. Heine, C. Jacob, K. Lesch, O. Fasmer, O. Fasmer, Per Knappskog, Per Knappskog, J. Kooij, Cornelis Kan, J. Buitelaar, E. Mick, P. Asherson, S. Faraone, B. Franke, S. Johansson, S. Johansson, J. Haavik, J. Haavik, A. Reif, M. Bayés, B. Cormand, B. Cormand (2010)
Meta‐analysis of brain‐derived neurotrophic factor p.Val66Met in adult ADHD in four European populationsAmerican Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153B
V. McCoy, C. Soriano, S. Gabbott (2016)
A review of preservational variation of fossil inclusions in amber of different chemical groupsEarth and Environmental Science Transactions of the Royal Society of Edinburgh, 107
S. Xiao, J. Schiffbauer, K. McFadden, Jerry Hunter (2010)
Petrographic and SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules: Implications for microbial processes in pyrite rim formation, silicification, and exceptional fossil preservationEarth and Planetary Science Letters, 297
X. Martínez-Delclòs, D. Briggs, E. Peñalver (2004)
Taphonomy of insects in carbonates and amberPalaeogeography, Palaeoclimatology, Palaeoecology, 203
K. Konhauser, V. Phoenix, S. Bottrell, D. Adams, I. Head (2001)
Microbial–silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolitesSedimentology, 48
D. Grimaldi, E. Bonwich, Michael. Delannoy, S. Doberstein (1994)
Electron Microscopic Studies of Mummified Tissues in Amber FossilsAmerican Museum Novitates, 3097
A. Muscente, S. Xiao (2015)
RESOLVING THREE-DIMENSIONAL AND SUBSURFICIAL FEATURES OF CARBONACEOUS COMPRESSIONS AND SHELLY FOSSILS USING BACKSCATTERED ELECTRON SCANNING ELECTRON MICROSCOPY (BSE-SEM), 30
A. Muscente, Andrew Hawkins, S. Xiao (2015)
Fossil preservation through phosphatization and silicification in the Ediacaran Doushantuo Formation (South China): a comparative synthesisPalaeogeography, Palaeoclimatology, Palaeoecology, 434
D. Grimaldi, Hukam Singh (2012)
The extinct genus Pareuthychaeta in Eocene ambers (Diptera: Schizophora: Ephydroidea)The Canadian Entomologist, 144
J. Langenheim (2003)
Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany
B. Mähler, Kathrin Janssen, M. Menneken, Mariam Tahoun, M. Lagos, G. Bierbaum, C. Müller, J. Rust (2020)
Calcite precipitation forms crystal clusters and muscle mineralization during the decomposition of Cambarellus diminutus (Decapoda: Cambaridae) in freshwaterPalaeontologia Electronica
(1987)
REM - Analysen an einer pyritis - ierten Ameise aus Baltischen Bernstein
D. Briggs, P. Wilby (1996)
The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossilsJournal of the Geological Society, 153
Susan Butts, D. Briggs (2011)
Silicification Through Time
D. Briggs (2018)
Sampling the insects of the amber forestProceedings of the National Academy of Sciences, 115
A. Martín-González, J. Wierzchos, J. Gutiérrez, Jesús Alonso, C. Ascaso (2009)
Double fossilization in eukaryotic microorganisms from Lower Cretaceous amberBMC Biology, 7
Eva‐Maria Sadowski, A. Schmidt, L. Seyfullah, M. Solórzano-Kraemer, C. Neumann, V. Perrichot, C. Hamann, R. Milke, Paul Nascimbene (2021)
Conservation, preparation and imaging of diverse ambers and their inclusionsEarth-Science Reviews
J. Lindgren, D. Nilsson, P. Sjövall, Martin Jarenmark, S. Ito, K. Wakamatsu, B. Kear, B. Schultz, René Sylvestersen, H. Madsen, J. LaFountain, C. Alwmark, M. Eriksson, S. Hall, P. Lindgren, I. Rodríguez-Meizoso, P. Ahlberg (2019)
Fossil insect eyes shed light on trilobite optics and the arthropod pigment screenNature, 573
A. Muscente, M. Laflamme, J. Schiffbauer, Jesse Broce, K. O'Donnell, Thomas Boag, M. Meyer, Andrew Hawkins, J. Huntley, S. Xiao (2017)
EXCEPTIONALLY PRESERVED FOSSIL ASSEMBLAGES THROUGH GEOLOGIC TIME AND SPACE
G. Cody, Neal Gupta, D. Briggs, A. Kilcoyne, R. Summons, F. Kenig, R. Plotnick, A. Scott (2011)
Molecular signature of chitin-protein complex in Paleozoic arthropodsGeology, 39
Tingting Yu, R. Kelly, Lin Mu, A. Ross, Jim Kennedy, P. Broly, Fangyuan Xia, Haichun Zhang, Bo Wang, D. Dilcher (2019)
An ammonite trapped in Burmese amberProceedings of the National Academy of Sciences of the United States of America, 116
V. McCoy, C. Soriano, M. Pegoraro, T. Luo, A. Boom, B. Foxman, S. Gabbott (2018)
Unlocking preservation bias in the amber insect fossil record through experimental decayPLoS ONE, 13
L. Park, K. Downing (2001)
Paleoecology of an Exceptionally Preserved Arthropod Fauna from Lake Deposits of the Miocene Barstow Formation, Southern California, U.S.A, 16
G. Shi, D. Grimaldi, G. Harlow, Jing Wang, Jun Wang, Meng-Jie Yang, Weiyan Lei, Qiu-li Li, Xian‐Hua Li (2012)
Age constraint on Burmese amber based on U–Pb dating of zirconsCretaceous Research, 37
(2015)
Fossil focus: Stuck in time–life trapped in amber
D. Penney (2010)
Biodiversity of fossils in Amber from the major world deposits
P. Craig (2011)
Evolution of Fossil Ecosystems Fossil Ecosystems of North America. A Guide to the Sites and their Extraordinary Biotas Fossil Behavior Compendium Biodiversity of Fossils in Amber from the Major World Deposits
J. Schiffbauer, S. Xiao, Yaoping Cai, A. Wallace, H. Hua, Jerry Hunter, Huifang Xu, Yongbo Peng, A. Kaufman (2014)
A unifying model for Neoproterozoic–Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compressionNature Communications, 5
R. Georgiou, P. Guériau, C. Sahle, S. Bernard, A. Mirone, R. Garrouste, U. Bergmann, J. Rueff, L. Bertrand (2019)
Carbon speciation in organic fossils using 2D to 3D x-ray Raman multispectral imagingScience Advances, 5
R. Lozano, Ricardo Fuente, E. Barrón, A. Rodrigo, J. Viejo, E. Peñalver (2020)
Phloem sap in Cretaceous ambers as abundant double emulsions preserving organic and inorganic residuesScientific Reports, 10
Hongjie Li, Chang-yu Sun, Yihang Fang, C. Carlson, Huifang Xu, A. Ješovnik, J. Sosa‐Calvo, R. Zarnowski, H. Bechtel, J. Fournelle, D. Andes, T. Schultz, P. Gilbert, C. Currie (2020)
Biomineral armor in leaf-cutter antsNature Communications, 11
G. Poinar, R. Hess (1982)
Ultrastructure of 40-Million-Year-Old Insect TissueScience, 215
S. H. Butts, D. E. G. Briggs (2011)
Taphonomy: Process and bias through time
J. Rust, Hukam Singh, R. Rana, T. Mccann, L. Singh, K. Anderson, Nivedita Sarkar, Paul Nascimbene, Frauke Stebner, Jennifer Thomas, M. Kraemer, Christopher Williams, M. Engel, A. Sahni, D. Grimaldi (2010)
Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of IndiaProceedings of the National Academy of Sciences, 107
L. Parry, Fiann Smithwick, K. Nordén, E. Saitta, J. Lozano-Fernandez, Alastair Tanner, Jean‐Bernard Caron, G. Edgecombe, D. Briggs, J. Vinther (2018)
Soft‐Bodied Fossils Are Not Simply Rotten Carcasses – Toward a Holistic Understanding of Exceptional Fossil PreservationBioEssays, 40
M. Laflamme, J. Schiffbauer, S. Darroch (2014)
Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization, 20
R. Cruickshank, K. Ko (2003)
Geology of an amber locality in the Hukawng Valley, Northern MyanmarJournal of Asian Earth Sciences, 21
L. Seyfullah, C. Beimforde, Jacopo Corso, V. Perrichot, J. Rikkinen, A. Schmidt (2018)
Production and preservation of resins – past and presentBiological Reviews, 93
L. Addadi, S. Weiner (1985)
Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization.Proceedings of the National Academy of Sciences of the United States of America, 82 12
Fossilized tree resin, or amber, commonly contains fossils of animals, plants and microorganisms. These inclusions have generally been interpreted as hollow moulds or mummified remains coated or filled with carbonaceous material. Here, we provide the first report of calcified and silicified insects in amber from the mid‐Cretaceous Kachin (Burmese) amber. Data from light microscopy, scanning electron microscopy (SEM), energy‐dispersive and wavelength‐dispersive X‐ray spectroscopy (EDX and WDX), X‐ray micro‐computed tomography (Micro‐CT) and Raman spectroscopy show that these Kachin fossils owe their preservation to multiple diagenetic mineralization processes. The labile tissues (e.g. eyes, wings and trachea) mainly consist of calcite, chalcedony and quartz with minor amounts of carbonaceous material, pyrite, iron oxide and phyllosilicate minerals. Calcite, quartz and chalcedony also occur in cracks as void‐filling cements, indicating that the minerals formed from chemical species that entered the fossil inclusions through cracks in the resin. The results demonstrate that resin and amber are not always closed systems. Fluids (e.g. sediment pore water, diagenetic fluid and ground water) at different burial stages have chances to interact with amber throughout its geological history and affect the preservational quality and morphological fidelity of its fossil inclusions.
Geobiology – Wiley
Published: May 1, 2022
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.