Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas

WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas We created a new dataset of spatially interpolated monthly climate data for global land areas at a very high spatial resolution (approximately 1 km2). We included monthly temperature (minimum, maximum and average), precipitation, solar radiation, vapour pressure and wind speed, aggregated across a target temporal range of 1970–2000, using data from between 9000 and 60 000 weather stations. Weather station data were interpolated using thin‐plate splines with covariates including elevation, distance to the coast and three satellite‐derived covariates: maximum and minimum land surface temperature as well as cloud cover, obtained with the MODIS satellite platform. Interpolation was done for 23 regions of varying size depending on station density. Satellite data improved prediction accuracy for temperature variables 5–15% (0.07–0.17 °C), particularly for areas with a low station density, although prediction error remained high in such regions for all climate variables. Contributions of satellite covariates were mostly negligible for the other variables, although their importance varied by region. In contrast to the common approach to use a single model formulation for the entire world, we constructed the final product by selecting the best performing model for each region and variable. Global cross‐validation correlations were ≥ 0.99 for temperature and humidity, 0.86 for precipitation and 0.76 for wind speed. The fact that most of our climate surface estimates were only marginally improved by use of satellite covariates highlights the importance having a dense, high‐quality network of climate station data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Climatology Wiley

WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas

Loading next page...
 
/lp/wiley/worldclim-2-new-1-km-spatial-resolution-climate-surfaces-for-global-ei77nfR4qA

References (43)

Publisher
Wiley
Copyright
© 2017 Royal Meteorological Society
ISSN
0899-8418
eISSN
1097-0088
DOI
10.1002/joc.5086
Publisher site
See Article on Publisher Site

Abstract

We created a new dataset of spatially interpolated monthly climate data for global land areas at a very high spatial resolution (approximately 1 km2). We included monthly temperature (minimum, maximum and average), precipitation, solar radiation, vapour pressure and wind speed, aggregated across a target temporal range of 1970–2000, using data from between 9000 and 60 000 weather stations. Weather station data were interpolated using thin‐plate splines with covariates including elevation, distance to the coast and three satellite‐derived covariates: maximum and minimum land surface temperature as well as cloud cover, obtained with the MODIS satellite platform. Interpolation was done for 23 regions of varying size depending on station density. Satellite data improved prediction accuracy for temperature variables 5–15% (0.07–0.17 °C), particularly for areas with a low station density, although prediction error remained high in such regions for all climate variables. Contributions of satellite covariates were mostly negligible for the other variables, although their importance varied by region. In contrast to the common approach to use a single model formulation for the entire world, we constructed the final product by selecting the best performing model for each region and variable. Global cross‐validation correlations were ≥ 0.99 for temperature and humidity, 0.86 for precipitation and 0.76 for wind speed. The fact that most of our climate surface estimates were only marginally improved by use of satellite covariates highlights the importance having a dense, high‐quality network of climate station data.

Journal

International Journal of ClimatologyWiley

Published: Oct 1, 2017

Keywords: ; ; ; ; ; ; ; ;

There are no references for this article.